mirror of
https://github.com/karpathy/nanochat.git
synced 2026-01-23 20:04:22 +00:00
2.9 KiB
2.9 KiB
Running lm-eval with nanochat checkpoints
This repo ships its own evals (CORE, ARC/GSM8K/MMLU/HumanEval/SpellingBee), but you can also run the HuggingFace-compatible lm-evaluation-harness. Steps below assume you've already run bash setup.sh (installs uv, submodules, deps, Rust tokenizer). Please clone and run this repo in the local disk!
1) Activate env
source .venv/bin/activate
2) Export a trained checkpoint to HF format
nanochat/to_hf.pyloads the latest checkpoint from~/.cache/nanochat/<source>_checkpointsand writes an HF folder.- Choose source:
base|mid|chatsft|chatrl.
# export latest base checkpoint to hf-export/base
uv run python -m nanochat.to_hf --source base --output hf-export/base
# export latest SFT checkpoint (chat model)
uv run python -m nanochat.to_hf --source sft --output hf-export/sft
3) Run lm-eval benchmarks on the exported model
Use the HF backend (--model hf). Pick tasks; nanochat's built-in evals cover these, so they're good starters in lm-eval too:
arc_easy,arc_challengemmlugsm8khumaneval
Example runs:
# Single task (MMLU)
uv run lm-eval run --model hf \
--model_args pretrained=hf-export/sft,trust_remote_code=True \
--tasks mmlu \
--batch_size 1
# A small suite similar to nanochat chat_eval coverage (vanilla HF backend)
# HumanEval requires both flags below to allow executing generated code.
HF_ALLOW_CODE_EVAL=1 uv run lm-eval run --confirm_run_unsafe_code --model hf \
--model_args pretrained=hf-export/sft,trust_remote_code=True \
--tasks arc_easy,arc_challenge,mmlu \
--batch_size 1 > log.log 2>&1
# Nanochat-aligned tool-use backend (matches nanochat eval formatting)
HF_ALLOW_CODE_EVAL=1 uv run lm-eval run \
--include_path tools/lm-eval/lm_eval/tasks \
--confirm_run_unsafe_code \
--model hf-nanochat-tool \
--model_args pretrained=hf-export/sft,trust_remote_code=True,tokenizer=hf-export/sft \
--tasks gsm8k_nanochat,humaneval_nanochat \
--batch_size 1 \
--log_samples \
--output_path lm_eval_sample_nanochat > log.log 2>&1
Notes:
- If you exported to a different folder, change
pretrained=...accordingly. You can also point to a remote HF repo name. - If you must stay offline, add
HF_DATASETS_OFFLINE=1 HF_HUB_OFFLINE=1 TRANSFORMERS_OFFLINE=1, but ensure the datasets are already cached locally (e.g.,allenai/ai2_arc,openai_humaneval,gsm8k,cais/mmlu). Otherwise, leave them unset so the harness can download once. --batch_size autocan help find the largest batch that fits GPU RAM. On CPU, keep it small.- No KV cache is implemented in the HF wrapper; generation is standard
AutoModelForCausalLMstyle. Thehf-nanochat-toolwrapper runs a nanochat-style tool loop (greedy, batch=1) and does not need--apply_chat_templatebecause the prompts already contain special tokens.