mirror of
https://github.com/karpathy/nanochat.git
synced 2026-01-23 20:04:22 +00:00
6.1 KiB
6.1 KiB
Running lm-eval with nanochat checkpoints
This repo ships its own evals (CORE, ARC/GSM8K/MMLU/HumanEval/SpellingBee), but you can also run the HuggingFace-compatible lm-evaluation-harness. Steps below assume you've already run bash setup.sh (installs uv, submodules, deps, Rust tokenizer). Please clone and run this repo in the local disk!
1) Activate env
source .venv/bin/activate
2) Export a trained checkpoint to HF format
nanochat/to_hf.py(MoE) loads the latest checkpoint from~/.cache/nanochat/<source>_checkpointsand, by default, exports with thegpt2tiktoken tokenizer. Use--tokenizer cacheif you want the cached rustbpe tokenizer from~/.cache/nanochat/tokenizer/.- Choose source:
base|mid|sft|rl(n_layer/n_embdetc. come from checkpoint metadata). - A checkpoint directory looks like:
~/.cache/nanochat/<source>_checkpoints/<model_tag>/model_XXXXXX.pt+meta_XXXXXX.json(optimizer shards optional, ignored for export). The exporter auto-picks the largestmodel_tagand latest step if you don’t pass--model-tag/--step.
# export latest base checkpoint to hf-export/moe_std (gpt2 tokenizer)
uv run python -m nanochat.to_hf --source base --model-tag d20 --step 49000 --output hf-export/moe_std --tokenizer gpt2
uv run python -m nanochat.to_hf --source base --model-tag d00 --output hf-export/moe_legacy --tokenizer gpt2
# export latest SFT checkpoint (chat model, rustbpe tokenizer)
uv run python -m nanochat.to_hf --source sft --output hf-export/moe_sft --tokenizer cache
- An exported folder should contain (minimum):
config.json,pytorch_model.bin,tokenizer.pkl,tokenizer_config.json, and the custom code filesconfiguration_nanochat_moe.py,modeling_nanochat_moe.py,tokenization_nanochat.py,gpt.py(written fortrust_remote_code=True).
3) Run lm-eval benchmarks on the exported model
Use the HF backend (--model hf). Pick tasks; nanochat's built-in evals cover these, so they're good starters in lm-eval too:
arc_easy,arc_challengemmlugsm8khumaneval
Example runs:
# Single task (MMLU)
uv run lm-eval run --model hf \
--model_args pretrained=hf-export/moe_std,trust_remote_code=True,tokenizer=hf-export/moe_std,max_length=1024 \
--tasks mmlu \
--batch_size 1
# commonsense benchmarks: HellaSwag, BoolQ, PIQA, Winograd-style
# (Winograd alternatives: winogrande (preferred) or wsc273 (classic WSC))
HF_ALLOW_CODE_EVAL=1 uv run lm-eval run --confirm_run_unsafe_code --model hf \
--model_args pretrained=hf-export/moe_sft_lr8,trust_remote_code=True,tokenizer=hf-export/moe_sft_lr8,max_length=1024 \
--tasks hellaswag,boolq,piqa,winogrande \
--batch_size 1 \
--log_samples \
--output_path lm_eval_sample_commonsense > sft_lr8_commonsense.log 2>&1
HF_ALLOW_CODE_EVAL=1 uv run lm-eval run --confirm_run_unsafe_code --model hf \
--model_args pretrained=hf-export/moe_sft_lr0.9,trust_remote_code=True,tokenizer=hf-export/moe_sft_lr0.9,max_length=1024 \
--tasks hellaswag,boolq,piqa,winogrande,arc_easy,arc_challenge,mmlu \
--batch_size 1 \
--log_samples \
--output_path lm_eval_sample_commonsense > moe_sft_lr0.9_all.log 2>&1
# arc_easy,arc_challenge,mmlu
HF_ALLOW_CODE_EVAL=1 uv run lm-eval run --confirm_run_unsafe_code --model hf \
--model_args pretrained=hf-export/moe_mid,trust_remote_code=True,tokenizer=hf-export/moe_mid,max_length=1024 \
--tasks arc_easy,arc_challenge,mmlu \
--batch_size 1 > moe_mid_arc_mmlu.log 2>&1
# gsm8k, humaneval
# Nanochat special token aligned backend "hf-nanochat-no-tool" (0-shot greedy decoding, no tool execution)
uv pip install -e tools/lm-eval
PYTHONPATH=tools/lm-eval HF_ALLOW_CODE_EVAL=1 uv run lm-eval run \
--include_path tools/lm-eval/lm_eval/tasks \
--confirm_run_unsafe_code \
--model hf-nanochat-no-tool \
--model_args pretrained=hf-export/moe_std,trust_remote_code=True,tokenizer=hf-export/moe_std,max_length=1024 \
--tasks gsm8k_nanochat,humaneval_nanochat \
--batch_size 1 \
--log_samples \
--output_path lm_eval_sample_nanochat_notool > moe_std_gsm8k_humaneval.log 2>&1
# limit 100 for quick test
PYTHONPATH=tools/lm-eval HF_ALLOW_CODE_EVAL=1 uv run lm-eval run \
--include_path tools/lm-eval/lm_eval/tasks \
--confirm_run_unsafe_code \
--model hf-nanochat-no-tool \
--model_args pretrained=hf-export/moe_std,trust_remote_code=True,tokenizer=hf-export/moe_std,max_length=1024 \
--tasks gsm8k_nanochat,humaneval_nanochat \
--batch_size 1 \
--log_samples \
--limit 100 \
--output_path lm_eval_sample_nanochat_notool > moe_std_gsm8k_humaneval.log 2>&1
# lm-eval-harness default backend(no special token alignment, 5-shot for gsm8k, 0-shot for humaneval)
# if want to run the full eval, remove the --limit flag
PYTHONPATH=tools/lm-eval HF_ALLOW_CODE_EVAL=1 uv run lm-eval run \
--include_path tools/lm-eval/lm_eval/tasks \
--confirm_run_unsafe_code \
--model hf \
--model_args pretrained=hf-export/moe_std,trust_remote_code=True,tokenizer=hf-export/moe_std,max_length=1024 \
--tasks gsm8k,humaneval \
--batch_size 1 \
--log_samples \
--limit 100 \
--output_path lm_eval_sample_nanochat_test > moe_std_gsm8k_humaneval.log 2>&1
Notes:
- If you exported to a different folder, change
pretrained=...accordingly. You can also point to a remote HF repo name. - If you must stay offline, add
HF_DATASETS_OFFLINE=1 HF_HUB_OFFLINE=1 TRANSFORMERS_OFFLINE=1, but ensure the datasets are already cached locally (e.g.,allenai/ai2_arc,openai_humaneval,gsm8k,cais/mmlu). Otherwise, leave them unset so the harness can download once. --batch_size autocan help find the largest batch that fits GPU RAM. On CPU, keep it small.hf-nanochat-no-toolonly supportsbatch_size=1.- No KV cache is implemented in the HF wrapper; generation is standard
AutoModelForCausalLMstyle. Thehf-nanochat-toolwrapper runs a nanochat-style tool loop (greedy, batch=1) and does not need--apply_chat_templatebecause the prompts already contain special tokens. Thehf-nanochat-no-toolwrapper uses the same greedy loop but does not execute tool-use blocks.