nanochat/scripts/base_eval.py

332 lines
14 KiB
Python

"""
Unified evaluation script for base models.
Supports three evaluation modes (comma-separated):
--eval core : CORE metric (accuracy on ICL tasks)
--eval bpb : Bits per byte on train/val splits
--eval sample : Generate samples from the model
Default is all three: --eval core,bpb,sample
Examples:
# Evaluate a HuggingFace model (e.g. GPT-2 124M) using 8 GPUs
torchrun --nproc_per_node=8 -m scripts.base_eval --hf-path openai-community/gpt2
# Evaluate a nanochat model (e.g. d24) using 8 GPUs
torchrun --nproc_per_node=8 -m scripts.base_eval --model-tag d24 --device-batch-size=16
# Quick/approximate evaluation using a single GPU
python -m scripts.base_eval --model-tag d24 --device-batch-size=16 --max-per-task=100 --split-tokens=524288
"""
import os
import csv
import time
import json
import yaml
import shutil
import random
import zipfile
import tempfile
import argparse
from contextlib import nullcontext
import torch
from nanochat.common import compute_init, compute_cleanup, print0, get_base_dir, autodetect_device_type, download_file_with_lock
from nanochat.tokenizer import HuggingFaceTokenizer, get_token_bytes
from nanochat.checkpoint_manager import load_model
from nanochat.core_eval import evaluate_task
from nanochat.dataloader import tokenizing_distributed_data_loader_bos_bestfit
from nanochat.loss_eval import evaluate_bpb
from nanochat.engine import Engine
# -----------------------------------------------------------------------------
# HuggingFace loading utilities
class ModelWrapper:
"""Lightweight wrapper to give HuggingFace models a nanochat-compatible interface."""
def __init__(self, model, max_seq_len=None):
self.model = model
self.max_seq_len = max_seq_len
def __call__(self, input_ids, targets=None, loss_reduction='mean'):
logits = self.model(input_ids).logits
if targets is None:
return logits
loss = torch.nn.functional.cross_entropy(
logits.view(-1, logits.size(-1)),
targets.view(-1),
ignore_index=-1,
reduction=loss_reduction
)
return loss
def get_device(self):
return next(self.model.parameters()).device
def load_hf_model(hf_path: str, device):
"""Load a HuggingFace model and tokenizer."""
print0(f"Loading HuggingFace model from: {hf_path}")
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(hf_path)
model.to(device)
model.eval()
max_seq_len = 1024 if "openai-community/gpt2" in hf_path else None
model = ModelWrapper(model, max_seq_len=max_seq_len)
tokenizer = HuggingFaceTokenizer.from_pretrained(hf_path)
return model, tokenizer
def get_hf_token_bytes(tokenizer, device="cpu"):
"""Compute token_bytes tensor for a HuggingFace tokenizer."""
vocab_size = tokenizer.tokenizer.get_vocab_size()
token_bytes = torch.zeros(vocab_size, dtype=torch.int64, device=device)
for token_id in range(vocab_size):
token_str = tokenizer.tokenizer.decode([token_id])
token_bytes[token_id] = len(token_str.encode('utf-8'))
return token_bytes
# -----------------------------------------------------------------------------
# CORE evaluation
EVAL_BUNDLE_URL = "https://karpathy-public.s3.us-west-2.amazonaws.com/eval_bundle.zip"
def place_eval_bundle(file_path):
"""Unzip eval_bundle.zip and place it in the base directory."""
base_dir = get_base_dir()
eval_bundle_dir = os.path.join(base_dir, "eval_bundle")
with tempfile.TemporaryDirectory() as tmpdir:
with zipfile.ZipFile(file_path, 'r') as zip_ref:
zip_ref.extractall(tmpdir)
extracted_bundle_dir = os.path.join(tmpdir, "eval_bundle")
shutil.move(extracted_bundle_dir, eval_bundle_dir)
print0(f"Placed eval_bundle directory at {eval_bundle_dir}")
def evaluate_core(model, tokenizer, device, max_per_task=-1):
"""
Evaluate a base model on the CORE benchmark.
Returns dict with results, centered_results, and core_metric.
"""
base_dir = get_base_dir()
eval_bundle_dir = os.path.join(base_dir, "eval_bundle")
# Download the eval bundle if needed
if not os.path.exists(eval_bundle_dir):
download_file_with_lock(EVAL_BUNDLE_URL, "eval_bundle.zip", postprocess_fn=place_eval_bundle)
config_path = os.path.join(eval_bundle_dir, "core.yaml")
data_base_path = os.path.join(eval_bundle_dir, "eval_data")
eval_meta_data = os.path.join(eval_bundle_dir, "eval_meta_data.csv")
with open(config_path, 'r', encoding='utf-8') as f:
config = yaml.safe_load(f)
tasks = config['icl_tasks']
# Load random baseline values
random_baselines = {}
with open(eval_meta_data, 'r', encoding='utf-8') as f:
reader = csv.DictReader(f)
for row in reader:
task_name = row['Eval Task']
random_baseline = row['Random baseline']
random_baselines[task_name] = float(random_baseline)
# Evaluate each task
results = {}
centered_results = {}
for task in tasks:
start_time = time.time()
label = task['label']
task_meta = {
'task_type': task['icl_task_type'],
'dataset_uri': task['dataset_uri'],
'num_fewshot': task['num_fewshot'][0],
'continuation_delimiter': task.get('continuation_delimiter', ' ')
}
print0(f"Evaluating: {label} ({task_meta['num_fewshot']}-shot, type: {task_meta['task_type']})... ", end='')
data_path = os.path.join(data_base_path, task_meta['dataset_uri'])
with open(data_path, 'r', encoding='utf-8') as f:
data = [json.loads(line.strip()) for line in f]
# Shuffle for consistent subsampling when using max_per_task
shuffle_rng = random.Random(1337)
shuffle_rng.shuffle(data)
if max_per_task > 0:
data = data[:max_per_task]
accuracy = evaluate_task(model, tokenizer, data, device, task_meta)
results[label] = accuracy
random_baseline = random_baselines[label]
centered_result = (accuracy - 0.01 * random_baseline) / (1.0 - 0.01 * random_baseline)
centered_results[label] = centered_result
elapsed = time.time() - start_time
print0(f"accuracy: {accuracy:.4f} | centered: {centered_result:.4f} | time: {elapsed:.2f}s")
core_metric = sum(centered_results.values()) / len(centered_results)
out = {
"results": results,
"centered_results": centered_results,
"core_metric": core_metric
}
return out
# -----------------------------------------------------------------------------
# Main
def main():
parser = argparse.ArgumentParser(description="Base model evaluation")
parser.add_argument('--eval', type=str, default='core,bpb,sample', help='Comma-separated evaluations to run: core,bpb,sample (default: all)')
parser.add_argument('--hf-path', type=str, default=None, help='HuggingFace model path (e.g. openai-community/gpt2)')
parser.add_argument('--model-tag', type=str, default=None, help='nanochat model tag to identify the checkpoint directory')
parser.add_argument('--step', type=int, default=None, help='Model step to load (default = last)')
parser.add_argument('--max-per-task', type=int, default=-1, help='Max examples per CORE task (-1 = all)')
parser.add_argument('--device-batch-size', type=int, default=32, help='Per-device batch size for BPB evaluation')
parser.add_argument('--split-tokens', type=int, default=40*524288, help='Number of tokens to evaluate per split for BPB')
parser.add_argument('--device-type', type=str, default='', help='cuda|cpu|mps (empty = autodetect)')
args = parser.parse_args()
# Parse evaluation modes
eval_modes = set(mode.strip() for mode in args.eval.split(','))
valid_modes = {'core', 'bpb', 'sample'}
invalid = eval_modes - valid_modes
if invalid:
parser.error(f"Invalid eval modes: {invalid}. Valid: {valid_modes}")
# Distributed / precision setup
device_type = autodetect_device_type() if args.device_type == '' else args.device_type
ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init(device_type)
autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=torch.bfloat16) if device_type == "cuda" else nullcontext()
# Load model and tokenizer
is_hf_model = args.hf_path is not None
if is_hf_model:
model, tokenizer = load_hf_model(args.hf_path, device)
sequence_len = model.max_seq_len or 1024
token_bytes = get_hf_token_bytes(tokenizer, device=device)
model_name = args.hf_path
model_slug = args.hf_path.replace("/", "-")
else:
model, tokenizer, meta = load_model("base", device, phase="eval", model_tag=args.model_tag, step=args.step)
sequence_len = meta["model_config"]["sequence_len"]
token_bytes = get_token_bytes(device=device)
model_name = f"base_model (step {meta['step']})"
model_slug = f"base_model_{meta['step']:06d}"
print0(f"Evaluating model: {model_name}")
print0(f"Eval modes: {', '.join(sorted(eval_modes))}")
# Results to log
core_results = None
bpb_results = {}
samples = []
unconditioned_samples = []
# --- CORE evaluation ---
if 'core' in eval_modes:
print0("\n" + "="*80)
print0("CORE Evaluation")
print0("="*80)
with autocast_ctx:
core_results = evaluate_core(model, tokenizer, device, max_per_task=args.max_per_task)
# Write CSV output
if ddp_rank == 0:
base_dir = get_base_dir()
output_csv_path = os.path.join(base_dir, "base_eval", f"{model_slug}.csv")
os.makedirs(os.path.dirname(output_csv_path), exist_ok=True)
with open(output_csv_path, 'w', encoding='utf-8', newline='') as f:
f.write(f"{'Task':<35}, {'Accuracy':<10}, {'Centered':<10}\n")
for label in core_results["results"]:
acc = core_results["results"][label]
centered = core_results["centered_results"][label]
f.write(f"{label:<35}, {acc:<10.6f}, {centered:<10.6f}\n")
f.write(f"{'CORE':<35}, {'':<10}, {core_results['core_metric']:<10.6f}\n")
print0(f"\nResults written to: {output_csv_path}")
print0(f"CORE metric: {core_results['core_metric']:.4f}")
# --- BPB evaluation ---
if 'bpb' in eval_modes:
print0("\n" + "="*80)
print0("BPB Evaluation")
print0("="*80)
tokens_per_step = args.device_batch_size * sequence_len * ddp_world_size
if args.split_tokens % tokens_per_step != 0:
# Adjust to nearest multiple
args.split_tokens = (args.split_tokens // tokens_per_step) * tokens_per_step
print0(f"Adjusted split_tokens to {args.split_tokens} (must be divisible by {tokens_per_step})")
steps = args.split_tokens // tokens_per_step
for split_name in ["train", "val"]:
loader = tokenizing_distributed_data_loader_bos_bestfit(tokenizer, args.device_batch_size, sequence_len, split_name, device=device)
with autocast_ctx:
bpb = evaluate_bpb(model, loader, steps, token_bytes)
bpb_results[split_name] = bpb
print0(f"{split_name} bpb: {bpb:.6f}")
# --- Sampling ---
if 'sample' in eval_modes and not is_hf_model:
print0("\n" + "="*80)
print0("Model Samples")
print0("="*80)
if ddp_rank == 0:
prompts = [
"The capital of France is",
"The chemical symbol of gold is",
"If yesterday was Friday, then tomorrow will be",
"The opposite of hot is",
"The planets of the solar system are:",
"My favorite color is",
"If 5*x + 3 = 13, then x is",
]
engine = Engine(model, tokenizer)
print0("\nConditioned samples:")
for prompt in prompts:
tokens = tokenizer(prompt, prepend="<|bos|>")
with autocast_ctx:
sample, _ = engine.generate_batch(tokens, num_samples=1, max_tokens=16, temperature=0)
sample_str = tokenizer.decode(sample[0])
print0("-" * 80)
print0(sample_str)
samples.append(sample_str)
print0("\nUnconditioned samples:")
tokens = tokenizer("", prepend="<|bos|>")
with autocast_ctx:
uncond, _ = engine.generate_batch(tokens, num_samples=8, max_tokens=128, temperature=1.0)
for sample in uncond:
sample_str = tokenizer.decode(sample)
print0("-" * 80)
print0(sample_str)
unconditioned_samples.append(sample_str)
elif 'sample' in eval_modes and is_hf_model:
print0("\nSkipping sampling for HuggingFace models (not supported)")
# --- Log to report ---
from nanochat.report import get_report
report_data = [{"model": model_name}]
if core_results:
report_data[0]["CORE metric"] = core_results["core_metric"]
report_data.append(core_results["centered_results"])
if bpb_results:
report_data[0]["train bpb"] = bpb_results.get("train")
report_data[0]["val bpb"] = bpb_results.get("val")
if samples:
report_data.append({f"sample {i}": s for i, s in enumerate(samples)})
if unconditioned_samples:
report_data.append({f"unconditioned {i}": s for i, s in enumerate(unconditioned_samples)})
get_report().log(section="Base model evaluation", data=report_data)
compute_cleanup()
if __name__ == "__main__":
main()