nanochat/scripts/base_train.py
2026-01-15 23:32:20 +00:00

452 lines
23 KiB
Python

"""
Train model. From root directory of the project, run as:
python -m scripts.base_train.py
or distributed as:
torchrun --nproc_per_node=8 -m scripts.base_train.py
If you are only on CPU/Macbook, you'll want to train a much much smaller LLM. Example:
python -m scripts.base_train --depth=4 --max-seq-len=512 --device-batch-size=1 --eval-tokens=512 --core-metric-every=-1 --total-batch-size=512 --num-iterations=20
"""
import os
os.environ["PYTORCH_ALLOC_CONF"] = "expandable_segments:True"
import argparse
import time
from contextlib import nullcontext
import wandb
import torch
from nanochat.gpt import GPT, GPTConfig
from nanochat.dataloader import tokenizing_distributed_data_loader_bos_bestfit, tokenizing_distributed_data_loader_with_state_bos_bestfit
from nanochat.common import compute_init, compute_cleanup, print0, DummyWandb, print_banner, get_base_dir, autodetect_device_type
from nanochat.tokenizer import get_tokenizer, get_token_bytes
from nanochat.checkpoint_manager import save_checkpoint, load_checkpoint
from nanochat.loss_eval import evaluate_bpb
from nanochat.engine import Engine
from scripts.base_eval import evaluate_model
print_banner()
# -----------------------------------------------------------------------------
# CLI arguments
parser = argparse.ArgumentParser(description="Pretrain base model")
# Logging
parser.add_argument("--run", type=str, default="dummy", help="wandb run name ('dummy' disables wandb logging)")
# Runtime
parser.add_argument("--device-type", type=str, default="", help="cuda|cpu|mps (empty = autodetect)")
# Model architecture
parser.add_argument("--depth", type=int, default=20, help="depth of the Transformer model")
parser.add_argument("--aspect-ratio", type=int, default=64, help="model_dim = depth * aspect_ratio")
parser.add_argument("--head-dim", type=int, default=128, help="target head dimension for attention")
parser.add_argument("--max-seq-len", type=int, default=2048, help="max context length")
parser.add_argument("--window-pattern", type=str, default="SSSL", help="sliding window pattern tiled across layers: L=full, S=half context (e.g. 'SSL')")
# Training horizon (only one used, in order of precedence)
parser.add_argument("--num-iterations", type=int, default=-1, help="explicit number of optimization steps (-1 = disable)")
parser.add_argument("--target-flops", type=float, default=-1.0, help="calculate num_iterations to reach target_flops (-1 = disable)")
parser.add_argument("--target-param-data-ratio", type=int, default=8, help="calculate num_iterations to maintain data:param ratio (Chinchilla=20, -1 = disable)")
# Optimization
parser.add_argument("--device-batch-size", type=int, default=32, help="per-device batch size")
parser.add_argument("--total-batch-size", type=int, default=524288, help="total batch size in tokens")
parser.add_argument("--embedding-lr", type=float, default=0.3, help="learning rate for embedding parameters (Adam)")
parser.add_argument("--unembedding-lr", type=float, default=0.004, help="learning rate for unembedding parameters (Adam)")
parser.add_argument("--weight-decay", type=float, default=0.2, help="cautious weight decay for the Muon optimizer (for weights)")
parser.add_argument("--matrix-lr", type=float, default=0.02, help="learning rate for matrix parameters (Muon)")
parser.add_argument("--scalar-lr", type=float, default=0.5, help="learning rate for scalars (resid_lambdas, x0_lambdas)")
parser.add_argument("--adam-beta1", type=float, default=0.8, help="Adam beta1 for embedding/unembedding")
parser.add_argument("--adam-beta2", type=float, default=0.95, help="Adam beta2 for embedding/unembedding")
parser.add_argument("--warmup-ratio", type=float, default=0.0, help="ratio of iterations for LR warmup")
parser.add_argument("--warmdown-ratio", type=float, default=0.4, help="ratio of iterations for LR warmdown")
parser.add_argument("--final-lr-frac", type=float, default=0.0, help="final LR as fraction of initial LR")
parser.add_argument("--resume-from-step", type=int, default=-1, help="resume training from this step (-1 = disable)")
# Evaluation
parser.add_argument("--eval-every", type=int, default=250, help="evaluate val bpb every N steps (-1 = disable)")
parser.add_argument("--eval-tokens", type=int, default=20*524288, help="number of tokens to evaluate val loss on")
parser.add_argument("--core-metric-every", type=int, default=2000, help="evaluate CORE metric every N steps (-1 = disable)")
parser.add_argument("--core-metric-max-per-task", type=int, default=500, help="examples per task for CORE metric")
parser.add_argument("--sample-every", type=int, default=2000, help="sample from model every N steps (-1 = disable)")
parser.add_argument("--save-every", type=int, default=-1, help="save checkpoints every N steps (-1 = only at end)")
# Output
parser.add_argument("--model-tag", type=str, default=None, help="override model tag for checkpoint directory name")
args = parser.parse_args()
user_config = vars(args).copy() # for logging
# -----------------------------------------------------------------------------
# Compute init
device_type = autodetect_device_type() if args.device_type == "" else args.device_type
ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init(device_type)
master_process = ddp_rank == 0 # this process will do logging, checkpointing etc.
autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=torch.bfloat16) if device_type == "cuda" else nullcontext()
synchronize = torch.cuda.synchronize if device_type == "cuda" else lambda: None
get_max_memory = torch.cuda.max_memory_allocated if device_type == "cuda" else lambda: 0
# wandb logging init
use_dummy_wandb = args.run == "dummy" or not master_process
wandb_run = DummyWandb() if use_dummy_wandb else wandb.init(project="nanochat", name=args.run, config=user_config)
# Tokenizer will be useful for evaluation, also we need the vocab size
tokenizer = get_tokenizer()
token_bytes = get_token_bytes(device=device)
vocab_size = tokenizer.get_vocab_size()
print0(f"Vocab size: {vocab_size:,}")
# Model kwargs are derived from the desired depth of the model
num_layers = args.depth
model_dim = args.depth * args.aspect_ratio
def find_num_heads(model_dim, target_head_dim):
# Find num_heads that divides model_dim evenly, with head_dim closest to target.
ideal = max(1, round(model_dim / target_head_dim))
for offset in range(model_dim):
for candidate in [ideal + offset, ideal - offset]:
if candidate > 0 and model_dim % candidate == 0:
return candidate
return 1
num_heads = find_num_heads(model_dim, args.head_dim)
num_kv_heads = num_heads # default is 1:1 GQA (Group Query Attention) ratio (i.e. GQA is disabled)
print0(f"num_layers: {num_layers}")
print0(f"model_dim: {model_dim}")
print0(f"num_heads: {num_heads}")
print0(f"num_kv_heads: {num_kv_heads}")
# Optimizer / data / training length related hyperparameters
# figure out the needed gradient accumulation to reach the desired total batch size
tokens_per_fwdbwd = args.device_batch_size * args.max_seq_len # tokens per iteration for a single rank
world_tokens_per_fwdbwd = tokens_per_fwdbwd * ddp_world_size # total tokens per iteration for all ranks
assert args.total_batch_size % world_tokens_per_fwdbwd == 0
grad_accum_steps = args.total_batch_size // world_tokens_per_fwdbwd
print0(f"Tokens / micro-batch / rank: {args.device_batch_size} x {args.max_seq_len} = {tokens_per_fwdbwd:,}")
print0(f"Tokens / micro-batch: {world_tokens_per_fwdbwd:,}")
print0(f"Total batch size {args.total_batch_size:,} => gradient accumulation steps: {grad_accum_steps}")
# Batch size scaling for learning rates (hyperparameters were tuned at reference batch size 2^19)
batch_lr_scale = 1.0
reference_batch_size = 2**19
batch_ratio = args.total_batch_size / reference_batch_size
if batch_ratio != 1.0:
# SGD: linear scaling with batch size is standard (not used in nanochat)
# AdamW: sqrt scaling is standard
# Muon: sqrt scaling is an assumption - not fully studied, but it's a second-order-ish optimizer
batch_lr_scale = batch_ratio ** 0.5
print0(f"Scaling LRs by {batch_lr_scale:.4f} for batch size {args.total_batch_size:,} (reference: {reference_batch_size:,})")
# Weight decay is tuned at d12 and its scaling seems to be \propto 1/channels^2 (or equivalently, \propto 1/depth^2 due to constant aspect ratio)
weight_decay_scaled = args.weight_decay * (12 / args.depth)**2
if args.depth != 12:
print0(f"Scaling weight decay from {args.weight_decay:.6f} to {weight_decay_scaled:.6f} for depth {args.depth}")
# -----------------------------------------------------------------------------
# Initialize the Model
# Create a new model with random weights
model_config_kwargs = dict(sequence_len=args.max_seq_len, vocab_size=vocab_size, n_layer=num_layers, n_head=num_heads, n_kv_head=num_kv_heads, n_embd=model_dim, window_pattern=args.window_pattern)
with torch.device("meta"):
# All tensors are created as meta tensors (they have shape/dtype but no data)
model_config = GPTConfig(**model_config_kwargs)
model = GPT(model_config)
model.to_empty(device=device) # All tensors get storage on target device but with uninitialized (garbage) data
model.init_weights() # All tensors get initialized
# If we are resuming, overwrite the model parameters with those of the checkpoint
base_dir = get_base_dir()
output_dirname = args.model_tag if args.model_tag else f"d{args.depth}" # e.g. d12
checkpoint_dir = os.path.join(base_dir, "base_checkpoints", output_dirname)
resuming = args.resume_from_step != -1
if resuming:
print0(f"Resuming optimization from step {args.resume_from_step}")
model_data, optimizer_data, meta_data = load_checkpoint(checkpoint_dir, args.resume_from_step, device, load_optimizer=True, rank=ddp_rank)
model.load_state_dict(model_data, strict=True, assign=True)
del model_data # free up this memory after the copy
orig_model = model # original, uncompiled model, for saving raw model state_dict and for inference/evaluation (because the shapes may change shape)
model = torch.compile(model, dynamic=False) # the inputs to model will never change shape so dynamic=False is safe
num_params = sum(p.numel() for p in model.parameters())
num_scaling_params = orig_model.num_scaling_params()
print0(f"Number of parameters: {num_params:,} (scaling: {num_scaling_params:,})")
num_flops_per_token = model.estimate_flops()
print0(f"Estimated FLOPs per token: {num_flops_per_token:e}")
# Calculate number of iterations. Either it is given, or from target flops, or from target data:param ratio (in that order)
assert args.num_iterations > 0 or args.target_param_data_ratio > 0 or args.target_flops > 0
if args.num_iterations > 0:
num_iterations = args.num_iterations
print0(f"Using user-provided number of iterations: {num_iterations:,}")
elif args.target_flops > 0:
# calculate the number of iterations from the target flops
num_iterations = round(args.target_flops / (num_flops_per_token * args.total_batch_size))
print0(f"Calculated number of iterations from target FLOPs: {num_iterations:,}")
elif args.target_param_data_ratio > 0:
# calculate the number of iterations from the target param data ratio (use scaling params per Kaplan et al.)
target_tokens = args.target_param_data_ratio * num_scaling_params
num_iterations = target_tokens // args.total_batch_size
print0(f"Calculated number of iterations from target data:param ratio: {num_iterations:,}")
else:
raise ValueError("No training horizon specified")
total_tokens = args.total_batch_size * num_iterations
print0(f"Total number of training tokens: {total_tokens:,}")
print0(f"Tokens : Params ratio: {args.total_batch_size * num_iterations / num_scaling_params:.2f}") # Chinchilla is ~20
print0(f"Total training FLOPs estimate: {num_flops_per_token * total_tokens:e}")
# -----------------------------------------------------------------------------
# Initialize the Optimizer (Muon for Linear layers, AdamW for embedding and lm_head)
adam_betas = (args.adam_beta1, args.adam_beta2)
optimizers = model.setup_optimizers(
unembedding_lr=args.unembedding_lr * batch_lr_scale,
embedding_lr=args.embedding_lr * batch_lr_scale,
matrix_lr=args.matrix_lr * batch_lr_scale,
weight_decay=weight_decay_scaled,
adam_betas=adam_betas,
scalar_lr=args.scalar_lr * batch_lr_scale,
)
adamw_optimizer, muon_optimizer = optimizers
if resuming:
for opt, dat in zip(optimizers, optimizer_data):
opt.load_state_dict(dat)
del optimizer_data # free up the memory
# -----------------------------------------------------------------------------
# Initialize the DataLoaders for train/val
dataloader_resume_state_dict = None if not resuming else meta_data["dataloader_state_dict"]
train_loader = tokenizing_distributed_data_loader_with_state_bos_bestfit(tokenizer, args.device_batch_size, args.max_seq_len, split="train", device=device, resume_state_dict=dataloader_resume_state_dict)
build_val_loader = lambda: tokenizing_distributed_data_loader_bos_bestfit(tokenizer, args.device_batch_size, args.max_seq_len, split="val", device=device)
x, y, dataloader_state_dict = next(train_loader) # kick off load of the very first batch of data
# -----------------------------------------------------------------------------
# Set up hyperparameter schedulers
# Learning rate scheduler
def get_lr_multiplier(it):
warmup_iters = round(args.warmup_ratio * num_iterations)
warmdown_iters = round(args.warmdown_ratio * num_iterations)
if it < warmup_iters:
return (it + 1) / warmup_iters
elif it <= num_iterations - warmdown_iters:
return 1.0
else:
progress = (num_iterations - it) / warmdown_iters
return progress * 1.0 + (1 - progress) * args.final_lr_frac
# Momentum scheduler for Muon optimizer
def get_muon_momentum(it):
frac = min(it / 300, 1)
momentum = (1 - frac) * 0.85 + frac * 0.95
return momentum
# Weight decay scheduler for Muon optimizer (linear to zero over the course of training)
def get_weight_decay(it):
return weight_decay_scaled * (1 - it / num_iterations)
# -----------------------------------------------------------------------------
# Loop state (variables updated by the training loop)
if not resuming:
step = 0
val_bpb = None # will be set if eval_every > 0
min_val_bpb = float("inf")
smooth_train_loss = 0 # EMA of training loss
total_training_time = 0 # total wall-clock time of training
else:
step = meta_data["step"]
loop_state = meta_data["loop_state"]
val_bpb = meta_data["val_bpb"]
min_val_bpb = loop_state["min_val_bpb"]
smooth_train_loss = loop_state["smooth_train_loss"]
total_training_time = loop_state["total_training_time"]
# -----------------------------------------------------------------------------
# Training loop
while True:
last_step = step == num_iterations # loop runs num_iterations+1 times so that we can eval/save at the end
flops_so_far = num_flops_per_token * args.total_batch_size * step
# once in a while: evaluate the val bpb (all ranks participate)
if args.eval_every > 0 and (last_step or step % args.eval_every == 0):
model.eval()
val_loader = build_val_loader()
eval_steps = args.eval_tokens // (args.device_batch_size * args.max_seq_len * ddp_world_size)
with autocast_ctx:
val_bpb = evaluate_bpb(model, val_loader, eval_steps, token_bytes)
print0(f"Step {step:05d} | Validation bpb: {val_bpb:.6f}")
if val_bpb < min_val_bpb:
min_val_bpb = val_bpb
wandb_run.log({
"step": step,
"total_training_flops": flops_so_far,
"total_training_time": total_training_time,
"val/bpb": val_bpb,
})
model.train()
# once in a while: estimate the CORE metric (all ranks participate)
# use the original uncompiled model because the inputs keep changing shape
results = {}
if args.core_metric_every > 0 and (last_step or (step > 0 and step % args.core_metric_every == 0)):
model.eval()
with autocast_ctx:
results = evaluate_model(orig_model, tokenizer, device, max_per_task=args.core_metric_max_per_task)
print0(f"Step {step:05d} | CORE metric: {results['core_metric']:.4f}")
wandb_run.log({
"step": step,
"total_training_flops": flops_so_far,
"core_metric": results["core_metric"],
"centered_results": results["centered_results"],
})
model.train()
# once in a while: sample from the model (only on master process)
# use the original uncompiled model because the inputs keep changing shape
if args.sample_every > 0 and master_process and (last_step or (step > 0 and step % args.sample_every == 0)):
model.eval()
prompts = [
"The capital of France is",
"The chemical symbol of gold is",
"If yesterday was Friday, then tomorrow will be",
"The opposite of hot is",
"The planets of the solar system are:",
"My favorite color is",
"If 5*x + 3 = 13, then x is",
]
engine = Engine(orig_model, tokenizer) # use orig_model to avoid recompilation
for prompt in prompts:
tokens = tokenizer(prompt, prepend="<|bos|>")
with autocast_ctx:
sample, _ = engine.generate_batch(tokens, num_samples=1, max_tokens=16, temperature=0)
print0(tokenizer.decode(sample[0]))
model.train()
# save checkpoint: at the end of the run, or every save_every steps, except at the first step or the resume step
if last_step or (step > 0 and step != args.resume_from_step and args.save_every > 0 and step % args.save_every == 0):
save_checkpoint(
checkpoint_dir,
step,
orig_model.state_dict(), # model parameters
[opt.state_dict() for opt in optimizers], # optimizer states
{ # metadata saved as json
"step": step,
"val_bpb": val_bpb, # loss at last step
"model_config": model_config_kwargs,
"user_config": user_config, # inputs to the training script
"device_batch_size": args.device_batch_size,
"max_seq_len": args.max_seq_len,
"dataloader_state_dict": dataloader_state_dict,
"loop_state": { # all loop state (other than step) so that we can resume training
"min_val_bpb": min_val_bpb,
"smooth_train_loss": smooth_train_loss,
"total_training_time": total_training_time,
},
},
rank=ddp_rank,
)
# termination conditions (TODO: possibly also add loss explosions etc.)
if last_step:
break
# -------------------------------------------------------------------------
# single training step
# evaluate the gradient
synchronize()
t0 = time.time()
for micro_step in range(grad_accum_steps):
with autocast_ctx:
loss = model(x, y)
train_loss = loss.detach() # for logging
loss = loss / grad_accum_steps # each .backward() is a grad sum => normalize loss here
loss.backward()
x, y, dataloader_state_dict = next(train_loader) # prefetch the next batch while the GPU is busy with forward/backward
# step the optimizers
lrm = get_lr_multiplier(step)
for opt in optimizers:
for group in opt.param_groups:
group["lr"] = group["initial_lr"] * lrm
muon_momentum = get_muon_momentum(step)
muon_weight_decay = get_weight_decay(step)
for group in muon_optimizer.param_groups:
group["momentum"] = muon_momentum
group["weight_decay"] = muon_weight_decay
for opt in optimizers:
opt.step()
model.zero_grad(set_to_none=True)
train_loss_f = train_loss.item() # .item() is a CPU-GPU sync point
synchronize()
t1 = time.time()
dt = t1 - t0
# -------------------------------------------------------------------------
# logging (CPU action only)
ema_beta = 0.9 # EMA decay factor for some smoothing just for nicer logging
smooth_train_loss = ema_beta * smooth_train_loss + (1 - ema_beta) * train_loss_f # EMA the training loss
debiased_smooth_loss = smooth_train_loss / (1 - ema_beta**(step + 1)) # debias the EMA
pct_done = 100 * step / num_iterations
tok_per_sec = int(args.total_batch_size / dt)
flops_per_sec = num_flops_per_token * args.total_batch_size / dt
promised_flops_per_sec_h100 = 989e12 * ddp_world_size # bfloat16 H100 SXM and without 2:4 sparsity
mfu = 100 * flops_per_sec / promised_flops_per_sec_h100 # in %
if step > 10:
total_training_time += dt # only count the time after the first 10 steps
# Calculate ETA based on average time per step (excluding first 10 steps)
steps_done = step - 10
if steps_done > 0:
avg_time_per_step = total_training_time / steps_done
remaining_steps = num_iterations - step
eta_seconds = remaining_steps * avg_time_per_step
eta_str = f" | eta: {eta_seconds/60:.1f}m"
else:
eta_str = ""
epoch = dataloader_state_dict["epoch"]
print0(f"step {step:05d}/{num_iterations:05d} ({pct_done:.2f}%) | loss: {debiased_smooth_loss:.6f} | lrm: {lrm:.2f} | dt: {dt * 1000:.2f}ms | tok/sec: {tok_per_sec:,} | mfu: {mfu:.2f} | epoch: {epoch} | total time: {total_training_time/60:.2f}m{eta_str}")
if step % 100 == 0:
log_data = {
"step": step,
"total_training_flops": flops_so_far,
"total_training_time": total_training_time,
"train/loss": debiased_smooth_loss,
"train/lrm": lrm,
"train/dt": dt,
"train/tok_per_sec": tok_per_sec,
"train/mfu": mfu,
"train/epoch": epoch,
}
wandb_run.log(log_data)
# state update
step += 1
# print a few more stats
print0(f"Peak memory usage: {get_max_memory() / 1024 / 1024:.2f}MiB")
print0(f"Total training time: {total_training_time/60:.2f}m")
if val_bpb is not None:
print0(f"Minimum validation bpb: {min_val_bpb:.6f}")
# Log to report
from nanochat.report import get_report
get_report().log(section="Base model training", data=[
user_config, # CLI args
{ # stats about the training setup
"Number of parameters": num_params,
"Number of FLOPs per token": f"{num_flops_per_token:e}",
"Calculated number of iterations": num_iterations,
"Number of training tokens": total_tokens,
"Tokens : Params ratio": args.total_batch_size * num_iterations / num_params,
"DDP world size": ddp_world_size,
"warmup_ratio": args.warmup_ratio,
"warmdown_ratio": args.warmdown_ratio,
"final_lr_frac": args.final_lr_frac,
},
{ # stats about training outcomes
"Minimum validation bpb": min_val_bpb if val_bpb is not None else None,
"Final validation bpb": val_bpb,
"CORE metric estimate": results.get("core_metric", None),
"MFU %": f"{mfu:.2f}%",
"Total training flops": f"{flops_so_far:e}",
"Total training time": f"{total_training_time/60:.2f}m",
"Peak memory usage": f"{get_max_memory() / 1024 / 1024:.2f}MiB",
}
])
# cleanup
wandb_run.finish() # wandb run finish
compute_cleanup()