mirror of
https://github.com/karpathy/nanochat.git
synced 2025-12-06 12:22:18 +00:00
286 lines
12 KiB
Python
286 lines
12 KiB
Python
"""
|
|
Finetune a base model to be a chat model.
|
|
Run on one GPU e.g. for debugging:
|
|
|
|
python -m scripts.chat_sft
|
|
|
|
Or torchrun for training:
|
|
|
|
torchrun --standalone --nproc_per_node=8 -m scripts.chat_sft
|
|
"""
|
|
|
|
import os
|
|
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
|
|
|
import wandb
|
|
import torch
|
|
import torch.distributed as dist
|
|
from contextlib import nullcontext
|
|
|
|
from nanochat.common import compute_init, compute_cleanup, get_base_dir, print0, DummyWandb, autodetect_device_type
|
|
from nanochat.checkpoint_manager import load_model
|
|
from nanochat.checkpoint_manager import save_checkpoint
|
|
from nanochat.engine import Engine
|
|
from scripts.chat_eval import run_chat_eval
|
|
|
|
from tasks.common import TaskMixture
|
|
from tasks.arc import ARC
|
|
from tasks.gsm8k import GSM8K
|
|
from tasks.smoltalk import SmolTalk
|
|
from tasks.customjson import CustomJSON
|
|
from tasks.spellingbee import SimpleSpelling, SpellingBee
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# SFT Hyperparameters
|
|
run = "dummy" # wandb run name default ("dummy" is special - we won't log to wandb)
|
|
# input model options
|
|
source = "mid" # base|mid , which checkpoint to load the model from (base model or midtrained model)
|
|
model_tag = None # model tag to load the model from (base model or midtrained model)
|
|
step = None # step to load the model from (base model or midtrained model)
|
|
# compute/precision
|
|
device_type = "" # cuda|cpu|mps (empty => autodetect)
|
|
dtype = "bfloat16"
|
|
device_batch_size = 4 # max to avoid OOM
|
|
# optimization
|
|
num_epochs = 1
|
|
num_iterations = -1 # override number of iterations (-1 = disable, use num_epochs to derive it)
|
|
target_examples_per_step = 32
|
|
unembedding_lr = 0.004
|
|
embedding_lr = 0.2
|
|
matrix_lr = 0.02
|
|
weight_decay = 0.0
|
|
init_lr_frac = 0.02
|
|
# evaluation and logging there of
|
|
eval_every = 100
|
|
eval_steps = 100
|
|
eval_metrics_every = 200
|
|
eval_metrics_max_problems = 1024
|
|
# now allow CLI to override the settings via the configurator lol
|
|
config_keys = [k for k,v in globals().items() if not k.startswith('_') and isinstance(v, (int, float, bool, str))]
|
|
exec(open(os.path.join('nanochat', 'configurator.py')).read()) # overrides from command line or config file
|
|
user_config = {k: globals()[k] for k in config_keys} # possibly useful for logging
|
|
# -----------------------------------------------------------------------------
|
|
|
|
# Compute init
|
|
device_type = autodetect_device_type() if device_type == "" else device_type
|
|
ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init(device_type)
|
|
master_process = ddp_rank == 0
|
|
ptdtype = torch.float32 if dtype == 'float32' else torch.bfloat16
|
|
autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) if device_type == "cuda" else nullcontext()
|
|
|
|
# wandb logging init
|
|
use_dummy_wandb = run == "dummy" or not master_process
|
|
wandb_run = DummyWandb() if use_dummy_wandb else wandb.init(project="nanochat-sft", name=run, config=user_config, save_code=True)
|
|
|
|
# Load the model and tokenizer
|
|
model, tokenizer, meta = load_model(source, device, phase="train", model_tag=model_tag, step=step)
|
|
orig_model = model # original, uncompiled model
|
|
# model = torch.compile(model, dynamic=True) # doesn't work super well because of variable lengths of inputs
|
|
engine = Engine(model, tokenizer) # will be used for inline model evaluation only
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# Task data mixture we'll train on
|
|
identity_conversations_filepath = os.path.join(get_base_dir(), "identity_conversations.jsonl")
|
|
train_ds = TaskMixture([
|
|
ARC(subset="ARC-Easy", split="train"), # 2.3K rows
|
|
ARC(subset="ARC-Challenge", split="train"), # 1.1K rows
|
|
GSM8K(subset="main", split="train"), # 8K rows
|
|
SmolTalk(split="train", stop=10_000), # 10K rows of smoltalk
|
|
CustomJSON(filepath=identity_conversations_filepath), # 1K rows of synthetic identity conversations
|
|
SimpleSpelling(size=300, split="train"), # 300 rows of Simple Spelling (e.g. spell the word 'apple')
|
|
SpellingBee(size=300, split="train"), # 300 rows of Spelling Bee (e.g. how many 'r' are in 'strawberry'?)
|
|
]) # 2.3K + 1.1K + 8K + 10K + 1K + 0.3K + 0.3K = 23K rows
|
|
val_ds = SmolTalk(split="test") # general conversations, 24K rows (though we don't actually use all of it)
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# DataLoader
|
|
|
|
def sft_data_generator(dataset, batch_size):
|
|
pad_token_id = tokenizer.encode_special("<|assistant_end|>") # use <|assistant_end|> as the pad token is ok, these positions are masked in the loss
|
|
# prepares a list of tokenized conversations into a batch and yields
|
|
def collate_and_yield(batch):
|
|
nrows = len(batch)
|
|
ncols = max(len(ids) for ids, mask in batch) - 1 # seq of n creates inputs/targets of n-1
|
|
inputs = torch.full((nrows, ncols), pad_token_id, dtype=torch.long)
|
|
targets = torch.full((nrows, ncols), -1, dtype=torch.long) # -1 is ignore index
|
|
for i, (ids, mask) in enumerate(batch):
|
|
n = len(ids)
|
|
ids_tensor = torch.tensor(ids, dtype=torch.long)
|
|
inputs[i, :n-1] = ids_tensor[:-1]
|
|
# recall -1 is the ignore index, so mask out targets where mask is 0
|
|
row_targets = ids_tensor[1:]
|
|
# mask[1:] omits the mask for the BOS token, which is never a target atm so it's ok
|
|
mask_tensor = torch.tensor(mask[1:], dtype=torch.long)
|
|
row_targets[mask_tensor == 0] = -1 # mask out targets where mask is 0
|
|
targets[i, :n-1] = row_targets
|
|
inputs = inputs.to(device) # move to device
|
|
targets = targets.to(device)
|
|
return inputs, targets
|
|
# iterates over the dataset in epochs, tokenizes
|
|
batch = []
|
|
while True:
|
|
for i in range(ddp_rank, len(dataset), ddp_world_size):
|
|
doc = dataset[i]
|
|
ids, mask = tokenizer.render_conversation(doc)
|
|
batch.append((ids, mask))
|
|
if len(batch) == batch_size:
|
|
yield collate_and_yield(batch)
|
|
batch = []
|
|
|
|
examples_per_step = device_batch_size * ddp_world_size
|
|
print0(f"Target examples per step: {target_examples_per_step}")
|
|
print0(f"Device batch size: {device_batch_size}")
|
|
print0(f"Examples per step is device_batch_size * ddp_world_size: {examples_per_step}")
|
|
assert target_examples_per_step % examples_per_step == 0, "Target examples per step must be divisible by examples per step"
|
|
grad_accum_steps = target_examples_per_step // examples_per_step
|
|
print0(f"=> Setting grad accum steps: {grad_accum_steps}")
|
|
|
|
if num_iterations == -1:
|
|
# derive num_iterations from num_epochs and the size of the dataset
|
|
assert num_epochs > 0, "num_epochs must be positive if num_iterations is -1"
|
|
num_iterations = (len(train_ds) // target_examples_per_step) * num_epochs
|
|
train_loader = sft_data_generator(train_ds, batch_size=device_batch_size)
|
|
build_val_loader = lambda: sft_data_generator(val_ds, batch_size=device_batch_size)
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# Initialize the Optimizer
|
|
|
|
optimizers = model.setup_optimizers(
|
|
unembedding_lr=unembedding_lr,
|
|
embedding_lr=embedding_lr,
|
|
matrix_lr=matrix_lr,
|
|
weight_decay=weight_decay,
|
|
)
|
|
# Set the initial learning rate as a fraction of the base learning rate
|
|
for opt in optimizers:
|
|
for group in opt.param_groups:
|
|
group["lr"] = group["lr"] * init_lr_frac
|
|
group["initial_lr"] = group["lr"] # save the initial learning so we can decay easily later
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# Training loop
|
|
|
|
# Learning rate scheduler
|
|
def get_lr_multiplier(it):
|
|
lrm = 1.0 - it / num_iterations
|
|
return lrm
|
|
|
|
# Go!
|
|
step = 0
|
|
train_iter = iter(train_loader)
|
|
for step in range(num_iterations):
|
|
last_step = step == num_iterations - 1
|
|
|
|
# evaluate the validation loss
|
|
if last_step or step % eval_every == 0:
|
|
model.eval()
|
|
val_iter = iter(build_val_loader())
|
|
losses = []
|
|
for _ in range(eval_steps):
|
|
val_inputs, val_targets = next(val_iter)
|
|
with torch.no_grad(), autocast_ctx:
|
|
loss = model(val_inputs, val_targets)
|
|
losses.append(loss)
|
|
val_loss = torch.stack(losses).mean() # average over eval_steps
|
|
if ddp:
|
|
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG) # average over ranks
|
|
val_loss = val_loss.item()
|
|
print0(f"Step {step:05d} | Validation loss: {val_loss:.6f}")
|
|
wandb_run.log({
|
|
"step": step,
|
|
"val_loss": val_loss,
|
|
})
|
|
model.train()
|
|
|
|
# evaluate accuracy of the multiple choice tasks (which are quick to run)
|
|
if last_step or (step > 0 and step % eval_metrics_every == 0):
|
|
model.eval()
|
|
metrics = {}
|
|
with torch.no_grad(), autocast_ctx:
|
|
# note that because these are inside no_grad, we can usually afford to at least ~2X the batch size
|
|
metrics["mmlu_acc"] = run_chat_eval("MMLU", model, tokenizer, engine, batch_size=device_batch_size*2, max_problems=eval_metrics_max_problems)
|
|
metrics["arc_easy_acc"] = run_chat_eval("ARC-Easy", model, tokenizer, engine, batch_size=device_batch_size*2, max_problems=eval_metrics_max_problems)
|
|
metrics_str = ', '.join(f'{k}: {v:.6f}' for k, v in metrics.items())
|
|
print0(f"Step {step:05d} | {metrics_str}")
|
|
wandb_run.log({
|
|
"step": step,
|
|
**metrics,
|
|
})
|
|
model.train()
|
|
|
|
if last_step:
|
|
break
|
|
|
|
# evaluate the gradient
|
|
num_tokens = torch.tensor(0, device=device) # the number of "active" tokens of supervision seen
|
|
for micro_step in range(grad_accum_steps):
|
|
train_inputs, train_targets = next(train_iter)
|
|
with autocast_ctx:
|
|
loss = model(train_inputs, train_targets)
|
|
train_loss = loss.detach() # for logging
|
|
loss = loss / grad_accum_steps # each .backward() is a grad sum => normalize loss here
|
|
loss.backward() # accumulate the gradient
|
|
num_tokens += (train_targets >= 0).sum()
|
|
if ddp:
|
|
dist.all_reduce(num_tokens, op=dist.ReduceOp.SUM) # sum over ranks
|
|
|
|
# learning rate scheduler
|
|
lrm = get_lr_multiplier(step)
|
|
for opt in optimizers:
|
|
for group in opt.param_groups:
|
|
group["lr"] = group["initial_lr"] * lrm
|
|
|
|
# step the optimizers
|
|
for opt in optimizers:
|
|
opt.step()
|
|
model.zero_grad(set_to_none=True)
|
|
|
|
# logging
|
|
train_loss_item = train_loss.item()
|
|
num_tokens_item = num_tokens.item()
|
|
print0(f"Step {step:05d}/{num_iterations:05d} | Training loss: {train_loss_item:.6f}| lrm: {lrm:.6f}| num_tokens: {num_tokens_item:,}")
|
|
wandb_run.log({
|
|
"step": step,
|
|
"lrm": lrm,
|
|
"train_loss": train_loss_item,
|
|
"num_tokens": num_tokens_item,
|
|
})
|
|
step += 1
|
|
|
|
# Save the model at the end of the run
|
|
if master_process:
|
|
base_dir = get_base_dir()
|
|
depth = model.config.n_layer
|
|
model_tag = f"d{depth}" # base the model tag on the depth of the base model
|
|
checkpoint_dir = os.path.join(base_dir, "chatsft_checkpoints", model_tag)
|
|
model_config_kwargs = model.config.__dict__ # slightly naughty, abusing the simplicity of GPTConfig, TODO nicer
|
|
save_checkpoint(
|
|
checkpoint_dir,
|
|
step,
|
|
model.state_dict(),
|
|
None, # note: we don't bother to save the optimizer state
|
|
{
|
|
"step": step,
|
|
"val_loss": val_loss,
|
|
**metrics,
|
|
"model_config": model_config_kwargs,
|
|
}
|
|
)
|
|
print(f"✅ Saved model checkpoint to {checkpoint_dir}")
|
|
|
|
# Log to report
|
|
from nanochat.report import get_report
|
|
get_report().log(section="Chat SFT", data=[
|
|
user_config, # CLI args
|
|
{
|
|
"Training rows": len(train_ds),
|
|
"Number of iterations": num_iterations,
|
|
"Training loss": train_loss_item,
|
|
"Validation loss": val_loss,
|
|
},
|
|
])
|
|
|
|
# Cleanup
|
|
wandb_run.finish()
|
|
compute_cleanup()
|