nanochat/nanochat/engine.py
2025-12-05 19:59:35 +02:00

405 lines
17 KiB
Python

"""
Engine for efficient inference of our models.
Everything works around token sequences:
- The user can send token sequences to the engine
- The engine returns the next token
Notes:
- The engine knows nothing about tokenization, it's purely token id sequences.
The whole thing is made as efficient as possible.
"""
import signal
import warnings
from collections import deque
from contextlib import contextmanager, nullcontext
import torch
import torch.nn.functional as F
from nanochat.checkpoint_manager import load_model
from nanochat.common import autodetect_device_type, compute_init
# -----------------------------------------------------------------------------
# Calculator tool helpers
@contextmanager
def timeout(duration, formula):
def timeout_handler(signum, frame):
raise Exception(f"'{formula}': timed out after {duration} seconds")
signal.signal(signal.SIGALRM, timeout_handler)
signal.alarm(duration)
yield
signal.alarm(0)
def eval_with_timeout(formula, max_time=3):
try:
with timeout(max_time, formula):
with warnings.catch_warnings():
warnings.simplefilter("ignore", SyntaxWarning)
return eval(formula, {"__builtins__": {}}, {})
except Exception:
signal.alarm(0)
# print(f"Warning: Failed to eval {formula}, exception: {e}") # it's ok ignore wrong calculator usage
return None
def use_calculator(expr):
"""
Evaluate a Python expression safely.
Supports both math expressions and string operations like .count()
"""
# Remove commas from numbers
expr = expr.replace(",", "")
# Check if it's a pure math expression (old behavior)
if all([x in "0123456789*+-/.() " for x in expr]):
if "**" in expr: # disallow power operator
return None
return eval_with_timeout(expr)
# Check if it's a string operation we support
# Allow: strings (single/double quotes), .count(), letters, numbers, spaces, parens
allowed_chars = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789'\"()._ "
if not all([x in allowed_chars for x in expr]):
return None
# Disallow dangerous patterns
dangerous_patterns = [
'__',
'import',
'exec',
'eval',
'compile',
'open',
'file',
'input',
'raw_input',
'globals',
'locals',
'vars',
'dir',
'getattr',
'setattr',
'delattr',
'hasattr',
]
expr_lower = expr.lower()
if any(pattern in expr_lower for pattern in dangerous_patterns):
return None
# Only allow .count() method for now (can expand later)
if '.count(' not in expr:
return None
# Evaluate with timeout
return eval_with_timeout(expr)
# -----------------------------------------------------------------------------
class KVCache:
"""
Works hand-in-hand with the GPT model to maintain the KV cache.
Note that the .pos advances automatically after the last layer of the Transformer inserts.
"""
def __init__(self, batch_size, num_heads, seq_len, head_dim, num_layers):
# Each of K/V is of shape (B, H, T, D) and we have one per layer of the Transformer.
self.kv_shape = (num_layers, 2, batch_size, num_heads, seq_len, head_dim)
self.kv_cache = None
self.pos = 0 # current position in time in the cache
def reset(self):
self.pos = 0
def get_pos(self):
return self.pos
def prefill(self, other):
"""
Prefill given another KV cache. Optionally expand along batch dim.
This is used when we do batch 1 prefill and then want to generate
multiple samples in parallel from there.
"""
# 1) validate the shapes
assert self.kv_cache is None, "Cannot prefill a non-empty KV cache"
assert other.kv_cache is not None, "Cannot prefill with a None KV cache"
for ix, (dim1, dim2) in enumerate(zip(self.kv_shape, other.kv_shape)):
# ix 0: num_layers, 1: k/v, 2: batch_size, 3: num_heads, 4: seq_len, 5: head_dim
if ix in [0, 1, 3, 5]:
# num_layers, k/v, num_heads, head_dim must match
assert dim1 == dim2, f"Dim {ix} mismatch: {dim1} != {dim2}"
elif ix == 2:
# batch_size can be expanded
assert dim1 == dim2 or dim2 == 1, f"Batch dim mismatch: {dim1} != {dim2}"
elif ix == 4:
# seq_len: self must be longer than other
assert dim1 >= dim2, f"Seq len mismatch: {dim1} < {dim2}"
# 2) initialize the cache
dtype, device = other.kv_cache.dtype, other.kv_cache.device
self.kv_cache = torch.empty(self.kv_shape, dtype=dtype, device=device)
# 3) copy the data over
self.kv_cache[:, :, :, :, : other.pos, :] = other.kv_cache
# 4) update the pos
self.pos = other.pos
def insert_kv(self, layer_idx, k, v):
# Lazy initialize the cache here because we need to know the dtype/device
if self.kv_cache is None:
self.kv_cache = torch.empty(self.kv_shape, dtype=k.dtype, device=k.device)
# Insert new keys/values to the cache and return the full cache so far
B, H, T_add, D = k.size()
t0, t1 = self.pos, self.pos + T_add
# Dynamically grow the cache if needed
if t1 > self.kv_cache.size(4):
t_needed = t1 + 1024 # as much as we need plus buffer of 1024
t_needed = (t_needed + 1023) & ~1023 # then round up to the nearest multiple of 1024
additional_shape = list(self.kv_cache.shape)
additional_shape[4] = t_needed - self.kv_cache.size(4)
additional_cache = torch.empty(additional_shape, dtype=k.dtype, device=k.device)
self.kv_cache = torch.cat([self.kv_cache, additional_cache], dim=4).contiguous()
self.kv_shape = self.kv_cache.shape
# Insert k, v into the cache
self.kv_cache[layer_idx, 0, :, :, t0:t1] = k
self.kv_cache[layer_idx, 1, :, :, t0:t1] = v
# Return the full cached keys/values up to current position (as a view)
key_view = self.kv_cache[layer_idx, 0, :, :, :t1]
value_view = self.kv_cache[layer_idx, 1, :, :, :t1]
# Increment pos after the last layer of the Transformer processes
if layer_idx == self.kv_cache.size(0) - 1:
self.pos = t1
return key_view, value_view
# -----------------------------------------------------------------------------
@torch.inference_mode()
def sample_next_token(logits, rng, temperature=1.0, top_k=None):
"""Sample a single next token from given logits of shape (B, vocab_size). Returns (B, 1)."""
assert temperature >= 0.0, "temperature must be non-negative"
if temperature == 0.0:
return torch.argmax(logits, dim=-1, keepdim=True)
if top_k is not None:
k = min(top_k, logits.size(-1))
vals, idx = torch.topk(logits, k, dim=-1)
vals = vals / temperature
probs = F.softmax(vals, dim=-1)
choice = torch.multinomial(probs, num_samples=1, generator=rng)
return idx.gather(1, choice)
else:
logits = logits / temperature
probs = F.softmax(logits, dim=-1)
return torch.multinomial(probs, num_samples=1, generator=rng)
# -----------------------------------------------------------------------------
class RowState:
# Per-row state tracking during generation
def __init__(self, current_tokens=None):
self.current_tokens = current_tokens or [] # Current token sequence for this row
self.forced_tokens = deque() # Queue of tokens to force inject
self.in_python_block = False # Whether we are inside a python block
self.python_expr_tokens = [] # Tokens of the current python expression
self.completed = False # Whether this row has completed generation
class Engine:
def __init__(self, model, tokenizer):
self.model = model
self.tokenizer = tokenizer # needed for tool use
@torch.inference_mode()
def generate(self, tokens, num_samples=1, max_tokens=None, temperature=1.0, top_k=None, seed=42):
"""Same as generate, but does single prefill and then clones the KV cache."""
assert isinstance(tokens, list) and isinstance(tokens[0], int), "expecting list of ints"
device = self.model.get_device()
rng = torch.Generator(device=device)
rng.manual_seed(seed)
# Get the special tokens we need to coordinate the tool use state machine
get_special = lambda s: self.tokenizer.encode_special(s)
python_start = get_special("<|python_start|>")
python_end = get_special("<|python_end|>")
output_start = get_special("<|output_start|>")
output_end = get_special("<|output_end|>")
assistant_end = get_special("<|assistant_end|>") # if sampled, ends row
bos = self.tokenizer.get_bos_token_id() # if sampled, ends row
# 1) Run a batch 1 prefill of the prompt tokens
m = self.model.config
kv_model_kwargs = {"num_heads": m.n_kv_head, "head_dim": m.n_embd // m.n_head, "num_layers": m.n_layer}
kv_cache_prefill = KVCache(
batch_size=1,
seq_len=len(tokens),
**kv_model_kwargs,
)
ids = torch.tensor([tokens], dtype=torch.long, device=device)
logits = self.model.forward(ids, kv_cache=kv_cache_prefill)
logits = logits[:, -1, :]
next_ids = sample_next_token(logits, rng, temperature, top_k) # (B, 1)
sampled_tokens = next_ids[:, 0].tolist()
# 2) Replicate the KV cache for each sample/row
kv_length_hint = (len(tokens) + max_tokens) if max_tokens is not None else self.model.config.sequence_len
kv_cache_decode = KVCache(
batch_size=num_samples,
seq_len=kv_length_hint,
**kv_model_kwargs,
)
kv_cache_decode.prefill(kv_cache_prefill)
del kv_cache_prefill # no need to keep this memory around
# 3) Initialize states for each sample
row_states = [RowState(tokens.copy()) for _ in range(num_samples)]
# 4) Main generation loop
num_generated = 0
first_iteration = True
while True:
# Stop condition: we've reached max tokens
if max_tokens is not None and num_generated >= max_tokens:
break
# Stop condition: all rows are completed
if all(state.completed for state in row_states):
break
# Get sampled tokens - either from prefill or from forward pass
if first_iteration:
# Use the tokens we already sampled from prefill
sampled_tokens = [sampled_tokens[0]] * num_samples # Broadcast first token to all rows
# TODO: we should sample a token for each row instead of broadcasting
first_iteration = False
else:
# Forward the model and get the next token for each row
logits = self.model.forward(ids, kv_cache=kv_cache_decode) # (B, T, vocab_size)
logits = logits[:, -1, :] # (B, vocab_size) at last time step
next_ids = sample_next_token(logits, rng, temperature, top_k) # (B, 1)
sampled_tokens = next_ids[:, 0].tolist()
# Process each row: choose the next token, update state, optional tool use
token_column = [] # contains the next token id along each row
token_masks = [] # contains the mask (was it sampled (1) or forced (0)?) along each row
for i, state in enumerate(row_states):
# Select the next token in this row
is_forced = len(state.forced_tokens) > 0 # are there tokens waiting to be forced in deque?
token_masks.append(0 if is_forced else 1) # mask is 0 if forced, 1 if sampled
next_token = state.forced_tokens.popleft() if is_forced else sampled_tokens[i]
token_column.append(next_token)
# Update the state of this row to include the next token
state.current_tokens.append(next_token)
# On <|assistant_end|> or <|bos|>, mark the row as completed
if next_token == assistant_end or next_token == bos:
state.completed = True
# Handle tool logic
if next_token == python_start:
state.in_python_block = True
state.python_expr_tokens = []
elif next_token == python_end and state.in_python_block:
state.in_python_block = False
if state.python_expr_tokens:
expr = self.tokenizer.decode(state.python_expr_tokens)
result = use_calculator(expr)
if result is not None:
result_tokens = self.tokenizer.encode(str(result))
state.forced_tokens.append(output_start)
state.forced_tokens.extend(result_tokens)
state.forced_tokens.append(output_end)
state.python_expr_tokens = []
elif state.in_python_block:
state.python_expr_tokens.append(next_token)
# Yield the token column
yield token_column, token_masks
num_generated += 1
# Prepare ids for next iteration
ids = torch.tensor(token_column, dtype=torch.long, device=device).unsqueeze(1)
def generate_batch(self, tokens, num_samples=1, **kwargs):
"""
Non-streaming batch generation that just returns the final token sequences.
Returns a list of token sequences (list of lists of ints).
Terminal tokens (assistant_end, bos) are not included in the results.
"""
assistant_end = self.tokenizer.encode_special("<|assistant_end|>")
bos = self.tokenizer.get_bos_token_id()
results = [tokens.copy() for _ in range(num_samples)]
masks = [[0] * len(tokens) for _ in range(num_samples)]
completed = [False] * num_samples
for token_column, token_masks in self.generate(tokens, num_samples, **kwargs):
for i, (token, mask) in enumerate(zip(token_column, token_masks)):
if not completed[i]:
if token == assistant_end or token == bos:
completed[i] = True
else:
results[i].append(token)
masks[i].append(mask)
# Stop if all rows are completed
if all(completed):
break
return results, masks
if __name__ == "__main__":
"""
Quick inline test to make sure that the naive/slow model.generate function
is equivalent to the faster Engine.generate function here.
"""
import time
# init compute
ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init()
device_type = autodetect_device_type()
autocast_ctx = (
torch.amp.autocast(device_type=device_type, dtype=torch.bfloat16) if device_type == "cuda" else nullcontext()
)
# load the model and tokenizer
model, tokenizer, meta = load_model("base", device, phase="eval")
bos_token_id = tokenizer.get_bos_token_id()
# common hyperparameters
kwargs = dict(max_tokens=64, temperature=0.0)
# set the starting prompt
prompt_tokens = tokenizer.encode("The chemical formula of water is", prepend=bos_token_id)
# generate the reference sequence using the model.generate() function
generated_tokens = []
torch.cuda.synchronize()
t0 = time.time()
stream = model.generate(prompt_tokens, **kwargs)
with autocast_ctx:
for token in stream:
generated_tokens.append(token)
chunk = tokenizer.decode([token])
print(chunk, end="", flush=True)
print()
torch.cuda.synchronize()
t1 = time.time()
print(f"Reference time: {t1 - t0:.2f}s")
reference_ids = generated_tokens
# generate tokens with Engine
generated_tokens = []
engine = Engine(model, tokenizer)
stream = engine.generate(prompt_tokens, num_samples=1, **kwargs) # note: runs in fp32
torch.cuda.synchronize()
t0 = time.time()
with autocast_ctx:
for token_column, token_masks in stream:
token = token_column[0] # only print out the first row
generated_tokens.append(token)
chunk = tokenizer.decode([token])
print(chunk, end="", flush=True)
print()
torch.cuda.synchronize()
t1 = time.time()
print(f"Engine time: {t1 - t0:.2f}s")
# compare the two sequences
for i in range(len(reference_ids)):
if reference_ids[i] != generated_tokens[i]:
print(f"Mismatch at {i}: {reference_ids[i]} != {generated_tokens[i]}")
break
print(f"Match: {reference_ids == generated_tokens}")