mirror of
https://github.com/karpathy/nanochat.git
synced 2026-02-19 10:00:24 +00:00
529 lines
25 KiB
Python
529 lines
25 KiB
Python
"""
|
|
A nice and efficient mixed AdamW/Muon Combined Optimizer.
|
|
Usually the embeddings and scalars go into AdamW, and the matrix parameters go into Muon.
|
|
Two versions are provided (MuonAdamW, DistMuonAdamW), for single GPU and distributed.
|
|
|
|
Addapted from: https://github.com/KellerJordan/modded-nanogpt
|
|
Further contributions from @karpathy and @chrisjmccormick.
|
|
"""
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
from torch import Tensor
|
|
|
|
# -----------------------------------------------------------------------------
|
|
"""
|
|
Good old AdamW optimizer, fused kernel.
|
|
https://arxiv.org/abs/1711.05101
|
|
"""
|
|
|
|
@torch.compile(dynamic=False, fullgraph=True)
|
|
def adamw_step_fused(
|
|
p: Tensor, # (32768, 768) - parameter tensor
|
|
grad: Tensor, # (32768, 768) - gradient, same shape as p
|
|
exp_avg: Tensor, # (32768, 768) - first moment, same shape as p
|
|
exp_avg_sq: Tensor, # (32768, 768) - second moment, same shape as p
|
|
step_t: Tensor, # () - 0-D CPU tensor, step count
|
|
lr_t: Tensor, # () - 0-D CPU tensor, learning rate
|
|
beta1_t: Tensor, # () - 0-D CPU tensor, beta1
|
|
beta2_t: Tensor, # () - 0-D CPU tensor, beta2
|
|
eps_t: Tensor, # () - 0-D CPU tensor, epsilon
|
|
wd_t: Tensor, # () - 0-D CPU tensor, weight decay
|
|
) -> None:
|
|
"""
|
|
Fused AdamW step: weight_decay -> momentum_update -> bias_correction -> param_update
|
|
All in one compiled graph to eliminate Python overhead between ops.
|
|
The 0-D CPU tensors avoid recompilation when hyperparameter values change.
|
|
"""
|
|
# Weight decay (decoupled, applied before the update)
|
|
p.mul_(1 - lr_t * wd_t)
|
|
# Update running averages (lerp_ is cleaner and fuses well)
|
|
exp_avg.lerp_(grad, 1 - beta1_t)
|
|
exp_avg_sq.lerp_(grad.square(), 1 - beta2_t)
|
|
# Bias corrections
|
|
bias1 = 1 - beta1_t ** step_t
|
|
bias2 = 1 - beta2_t ** step_t
|
|
# Compute update and apply
|
|
denom = (exp_avg_sq / bias2).sqrt() + eps_t
|
|
step_size = lr_t / bias1
|
|
p.add_(exp_avg / denom, alpha=-step_size)
|
|
|
|
# -----------------------------------------------------------------------------
|
|
"""
|
|
Muon optimizer adapted and simplified from modded-nanogpt.
|
|
https://github.com/KellerJordan/modded-nanogpt
|
|
|
|
Background:
|
|
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
|
|
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
|
|
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
|
|
zero even beyond the point where the iteration no longer converges all the way to one everywhere
|
|
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
|
|
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
|
|
performance at all relative to UV^T, where USV^T = G is the SVD.
|
|
|
|
Here, an alternative to Newton-Schulz iteration with potentially better convergence properties:
|
|
Polar Express Sign Method for orthogonalization.
|
|
https://arxiv.org/pdf/2505.16932
|
|
by Noah Amsel, David Persson, Christopher Musco, Robert M. Gower.
|
|
|
|
Some of the changes in nanochat implementation:
|
|
- Uses a simpler, more general approach to parameter grouping and stacking
|
|
- Uses a single fused kernel for the momentum -> polar_express -> variance_reduction -> update step
|
|
- Makes no assumptions about model architecture (e.g. that attention weights are fused into QKVO format)
|
|
"""
|
|
|
|
# Coefficients for Polar Express (computed for num_iters=5, safety_factor=2e-2, cushion=2)
|
|
# From https://arxiv.org/pdf/2505.16932
|
|
polar_express_coeffs = [
|
|
(8.156554524902461, -22.48329292557795, 15.878769915207462),
|
|
(4.042929935166739, -2.808917465908714, 0.5000178451051316),
|
|
(3.8916678022926607, -2.772484153217685, 0.5060648178503393),
|
|
(3.285753657755655, -2.3681294933425376, 0.46449024233003106),
|
|
(2.3465413258596377, -1.7097828382687081, 0.42323551169305323),
|
|
]
|
|
|
|
@torch.compile(dynamic=False, fullgraph=True)
|
|
def muon_step_fused(
|
|
stacked_grads: Tensor, # (12, 768, 3072) - stacked gradients
|
|
stacked_params: Tensor, # (12, 768, 3072) - stacked parameters
|
|
momentum_buffer: Tensor, # (12, 768, 3072) - first moment buffer
|
|
second_momentum_buffer: Tensor, # (12, 768, 1) or (12, 1, 3072) - factored second moment
|
|
momentum_t: Tensor, # () - 0-D CPU tensor, momentum coefficient
|
|
lr_t: Tensor, # () - 0-D CPU tensor, learning rate
|
|
wd_t: Tensor, # () - 0-D CPU tensor, weight decay
|
|
beta2_t: Tensor, # () - 0-D CPU tensor, beta2 for second moment
|
|
ns_steps: int, # 5 - number of Newton-Schulz/Polar Express iterations
|
|
red_dim: int, # -1 or -2 - reduction dimension for variance
|
|
) -> None:
|
|
"""
|
|
Fused Muon step: momentum -> polar_express -> variance_reduction -> cautious_update
|
|
All in one compiled graph to eliminate Python overhead between ops.
|
|
Some of the constants are 0-D CPU tensors to avoid recompilation when values change.
|
|
"""
|
|
|
|
# Nesterov momentum
|
|
momentum = momentum_t.to(stacked_grads.dtype)
|
|
momentum_buffer.lerp_(stacked_grads, 1 - momentum)
|
|
g = stacked_grads.lerp_(momentum_buffer, momentum)
|
|
|
|
# Polar express
|
|
X = g.bfloat16()
|
|
X = X / (X.norm(dim=(-2, -1), keepdim=True) * 1.02 + 1e-6)
|
|
if g.size(-2) > g.size(-1): # Tall matrix
|
|
for a, b, c in polar_express_coeffs[:ns_steps]:
|
|
A = X.mT @ X
|
|
B = b * A + c * (A @ A)
|
|
X = a * X + X @ B
|
|
else: # Wide matrix (original math)
|
|
for a, b, c in polar_express_coeffs[:ns_steps]:
|
|
A = X @ X.mT
|
|
B = b * A + c * (A @ A)
|
|
X = a * X + B @ X
|
|
g = X
|
|
|
|
# Variance reduction
|
|
beta2 = beta2_t.to(g.dtype)
|
|
v_mean = g.float().square().mean(dim=red_dim, keepdim=True)
|
|
red_dim_size = g.size(red_dim)
|
|
v_norm_sq = v_mean.sum(dim=(-2, -1), keepdim=True) * red_dim_size
|
|
v_norm = v_norm_sq.sqrt()
|
|
second_momentum_buffer.lerp_(v_mean.to(dtype=second_momentum_buffer.dtype), 1 - beta2)
|
|
step_size = second_momentum_buffer.clamp_min(1e-10).rsqrt()
|
|
scaled_sq_sum = (v_mean * red_dim_size) * step_size.float().square()
|
|
v_norm_new = scaled_sq_sum.sum(dim=(-2, -1), keepdim=True).sqrt()
|
|
final_scale = step_size * (v_norm / v_norm_new.clamp_min(1e-10))
|
|
g = g * final_scale.to(g.dtype)
|
|
|
|
# Cautious weight decay + parameter update
|
|
lr = lr_t.to(g.dtype)
|
|
wd = wd_t.to(g.dtype)
|
|
mask = (g * stacked_params) >= 0
|
|
stacked_params.sub_(lr * g + lr * wd * stacked_params * mask)
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# Single GPU version of the MuonAdamW optimizer.
|
|
# Used mostly for reference, debugging and testing.
|
|
|
|
class MuonAdamW(torch.optim.Optimizer):
|
|
"""
|
|
Combined optimizer: Muon for 2D matrix params, AdamW for others, single GPU version.
|
|
|
|
AdamW - Fused AdamW optimizer step.
|
|
|
|
Muon - MomentUm Orthogonalized by Newton-schulz
|
|
https://kellerjordan.github.io/posts/muon/
|
|
|
|
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
|
|
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
|
|
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
|
|
the advantage that it can be stably run in bfloat16 on the GPU.
|
|
|
|
Some warnings:
|
|
- The Muon optimizer should not be used for the embedding layer, the final fully connected layer,
|
|
or any {0,1}-D parameters; those should all be optimized by a standard method (e.g., AdamW).
|
|
- To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions.
|
|
|
|
Arguments:
|
|
param_groups: List of dicts, each containing:
|
|
- 'params': List of parameters
|
|
- 'kind': 'adamw' or 'muon'
|
|
- For AdamW groups: 'lr', 'betas', 'eps', 'weight_decay'
|
|
- For Muon groups: 'lr', 'momentum', 'ns_steps', 'beta2', 'weight_decay'
|
|
"""
|
|
def __init__(self, param_groups: list[dict]):
|
|
super().__init__(param_groups, defaults={})
|
|
# 0-D CPU tensors to avoid torch.compile recompilation when values change
|
|
# AdamW tensors
|
|
self._adamw_step_t = torch.tensor(0.0, dtype=torch.float32, device="cpu")
|
|
self._adamw_lr_t = torch.tensor(0.0, dtype=torch.float32, device="cpu")
|
|
self._adamw_beta1_t = torch.tensor(0.0, dtype=torch.float32, device="cpu")
|
|
self._adamw_beta2_t = torch.tensor(0.0, dtype=torch.float32, device="cpu")
|
|
self._adamw_eps_t = torch.tensor(0.0, dtype=torch.float32, device="cpu")
|
|
self._adamw_wd_t = torch.tensor(0.0, dtype=torch.float32, device="cpu")
|
|
# Muon tensors
|
|
self._muon_momentum_t = torch.tensor(0.0, dtype=torch.float32, device="cpu")
|
|
self._muon_lr_t = torch.tensor(0.0, dtype=torch.float32, device="cpu")
|
|
self._muon_wd_t = torch.tensor(0.0, dtype=torch.float32, device="cpu")
|
|
self._muon_beta2_t = torch.tensor(0.0, dtype=torch.float32, device="cpu")
|
|
|
|
def _step_adamw(self, group: dict) -> None:
|
|
"""
|
|
AdamW update for each param in the group individually.
|
|
Lazy init the state, fill in all 0-D tensors, call the fused kernel.
|
|
"""
|
|
for p in group['params']:
|
|
if p.grad is None:
|
|
continue
|
|
grad = p.grad
|
|
state = self.state[p]
|
|
|
|
# State init
|
|
if not state:
|
|
state['step'] = 0
|
|
state['exp_avg'] = torch.zeros_like(p)
|
|
state['exp_avg_sq'] = torch.zeros_like(p)
|
|
exp_avg = state['exp_avg']
|
|
exp_avg_sq = state['exp_avg_sq']
|
|
state['step'] += 1
|
|
|
|
# Fill 0-D tensors with current values
|
|
self._adamw_step_t.fill_(state['step'])
|
|
self._adamw_lr_t.fill_(group['lr'])
|
|
self._adamw_beta1_t.fill_(group['betas'][0])
|
|
self._adamw_beta2_t.fill_(group['betas'][1])
|
|
self._adamw_eps_t.fill_(group['eps'])
|
|
self._adamw_wd_t.fill_(group['weight_decay'])
|
|
|
|
# Fused update: weight_decay -> momentum -> bias_correction -> param_update
|
|
adamw_step_fused(
|
|
p, grad, exp_avg, exp_avg_sq,
|
|
self._adamw_step_t, self._adamw_lr_t, self._adamw_beta1_t,
|
|
self._adamw_beta2_t, self._adamw_eps_t, self._adamw_wd_t,
|
|
)
|
|
|
|
def _step_muon(self, group: dict) -> None:
|
|
"""
|
|
Muon update for all params in the group (stacked for efficiency).
|
|
Lazy init the state, fill in all 0-D tensors, call the fused kernel.
|
|
"""
|
|
params: list[Tensor] = group['params']
|
|
if not params:
|
|
return
|
|
|
|
# Get or create group-level buffers (stored in first param's state for convenience)
|
|
p = params[0]
|
|
state = self.state[p]
|
|
num_params = len(params)
|
|
shape, device, dtype = p.shape, p.device, p.dtype
|
|
|
|
# Momentum for every individual parameter
|
|
if "momentum_buffer" not in state:
|
|
state["momentum_buffer"] = torch.zeros(num_params, *shape, dtype=dtype, device=device)
|
|
momentum_buffer = state["momentum_buffer"]
|
|
|
|
# Second momentum buffer is factored, either per-row or per-column
|
|
if "second_momentum_buffer" not in state:
|
|
state_shape = (num_params, shape[-2], 1) if shape[-2] >= shape[-1] else (num_params, 1, shape[-1])
|
|
state["second_momentum_buffer"] = torch.zeros(state_shape, dtype=dtype, device=device)
|
|
second_momentum_buffer = state["second_momentum_buffer"]
|
|
red_dim = -1 if shape[-2] >= shape[-1] else -2
|
|
|
|
# Stack grads and params (NOTE: this assumes all params have the same shape)
|
|
stacked_grads = torch.stack([p.grad for p in params])
|
|
stacked_params = torch.stack(params)
|
|
|
|
# Fill all the 0-D tensors with current values
|
|
self._muon_momentum_t.fill_(group["momentum"])
|
|
self._muon_beta2_t.fill_(group["beta2"] if group["beta2"] is not None else 0.0)
|
|
self._muon_lr_t.fill_(group["lr"] * max(1.0, shape[-2] / shape[-1])**0.5)
|
|
self._muon_wd_t.fill_(group["weight_decay"])
|
|
|
|
# Single fused kernel: momentum -> polar_express -> variance_reduction -> update
|
|
muon_step_fused(
|
|
stacked_grads,
|
|
stacked_params,
|
|
momentum_buffer,
|
|
second_momentum_buffer,
|
|
self._muon_momentum_t,
|
|
self._muon_lr_t,
|
|
self._muon_wd_t,
|
|
self._muon_beta2_t,
|
|
group["ns_steps"],
|
|
red_dim,
|
|
)
|
|
|
|
# Copy back to original params
|
|
torch._foreach_copy_(params, list(stacked_params.unbind(0)))
|
|
|
|
@torch.no_grad()
|
|
def step(self):
|
|
for group in self.param_groups:
|
|
if group['kind'] == 'adamw':
|
|
self._step_adamw(group)
|
|
elif group['kind'] == 'muon':
|
|
self._step_muon(group)
|
|
else:
|
|
raise ValueError(f"Unknown optimizer kind: {group['kind']}")
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# Distributed version of the MuonAdamW optimizer.
|
|
# Used for training on multiple GPUs.
|
|
|
|
class DistMuonAdamW(torch.optim.Optimizer):
|
|
"""
|
|
Combined distributed optimizer: Muon for 2D matrix params, AdamW for others.
|
|
|
|
See MuonAdamW for the algorithmic details of each optimizer. This class adds
|
|
distributed communication to enable multi-GPU training without PyTorch DDP.
|
|
|
|
Design Goals:
|
|
- Overlap communication with computation (async ops)
|
|
- Minimize memory by sharding optimizer states across ranks (ZeRO-2 style)
|
|
- Batch small tensors into single comm ops where possible
|
|
|
|
Communication Pattern (3-phase async):
|
|
We use a 3-phase structure to maximize overlap between communication and compute:
|
|
|
|
Phase 1: Launch all async reduce ops
|
|
- Kick off all reduce_scatter/all_reduce operations
|
|
- Don't wait - let them run in background while we continue
|
|
|
|
Phase 2: Wait for reduces, compute updates, launch gathers
|
|
- For each group: wait for its reduce, compute the update, launch gather
|
|
- By processing groups in order, earlier gathers run while later computes happen
|
|
|
|
Phase 3: Wait for gathers, copy back
|
|
- Wait for all gathers to complete
|
|
- Copy updated params back to original tensors (Muon only)
|
|
|
|
AdamW Communication (ZeRO-2 style):
|
|
- Small params (<1024 elements): all_reduce gradients, update full param on each rank.
|
|
Optimizer state is replicated but these params are tiny (scalars, biases).
|
|
- Large params: reduce_scatter gradients so each rank gets 1/N of the grad, update
|
|
only that slice, then all_gather the updated slices. Optimizer state (exp_avg,
|
|
exp_avg_sq) is sharded - each rank only stores state for its slice.
|
|
Requires param.shape[0] divisible by world_size.
|
|
|
|
Muon Communication (stacked + chunked):
|
|
- All params in a Muon group must have the same shape (caller's responsibility).
|
|
- Stack all K params into a single (K, *shape) tensor for efficient comm.
|
|
- Divide K params across N ranks: each rank "owns" ceil(K/N) params.
|
|
- reduce_scatter the stacked grads so each rank gets its chunk.
|
|
- Each rank computes Muon update only for params it owns.
|
|
- all_gather the updated params back to all ranks.
|
|
- Optimizer state (momentum_buffer, second_momentum_buffer) is sharded by chunk.
|
|
- Padding: if K doesn't divide evenly, we zero-pad to (ceil(K/N) * N) for comm,
|
|
then ignore the padding when copying back.
|
|
|
|
Buffer Reuse:
|
|
- For Muon, we allocate stacked_grads for reduce_scatter input, then reuse the
|
|
same buffer as the output for all_gather (stacked_params). This saves memory
|
|
since we don't need both buffers simultaneously.
|
|
|
|
Arguments:
|
|
param_groups: List of dicts, each containing:
|
|
- 'params': List of parameters
|
|
- 'kind': 'adamw' or 'muon'
|
|
- For AdamW groups: 'lr', 'betas', 'eps', 'weight_decay'
|
|
- For Muon groups: 'lr', 'momentum', 'ns_steps', 'beta2', 'weight_decay'
|
|
"""
|
|
def __init__(self, param_groups: list[dict]):
|
|
super().__init__(param_groups, defaults={})
|
|
# 0-D CPU tensors to avoid torch.compile recompilation when values change
|
|
self._adamw_step_t = torch.tensor(0.0, dtype=torch.float32, device="cpu")
|
|
self._adamw_lr_t = torch.tensor(0.0, dtype=torch.float32, device="cpu")
|
|
self._adamw_beta1_t = torch.tensor(0.0, dtype=torch.float32, device="cpu")
|
|
self._adamw_beta2_t = torch.tensor(0.0, dtype=torch.float32, device="cpu")
|
|
self._adamw_eps_t = torch.tensor(0.0, dtype=torch.float32, device="cpu")
|
|
self._adamw_wd_t = torch.tensor(0.0, dtype=torch.float32, device="cpu")
|
|
self._muon_momentum_t = torch.tensor(0.0, dtype=torch.float32, device="cpu")
|
|
self._muon_lr_t = torch.tensor(0.0, dtype=torch.float32, device="cpu")
|
|
self._muon_wd_t = torch.tensor(0.0, dtype=torch.float32, device="cpu")
|
|
self._muon_beta2_t = torch.tensor(0.0, dtype=torch.float32, device="cpu")
|
|
|
|
def _reduce_adamw(self, group: dict, world_size: int) -> dict:
|
|
"""Launch async reduce ops for AdamW group. Returns info dict with per-param infos."""
|
|
param_infos = {}
|
|
for p in group['params']:
|
|
grad = p.grad
|
|
if p.numel() < 1024:
|
|
# Small params: all_reduce (no scatter/gather needed)
|
|
future = dist.all_reduce(grad, op=dist.ReduceOp.AVG, async_op=True).get_future()
|
|
param_infos[p] = dict(future=future, grad_slice=grad, is_small=True)
|
|
else:
|
|
# Large params: reduce_scatter
|
|
rank_size = grad.shape[0] // world_size
|
|
grad_slice = torch.empty_like(grad[:rank_size])
|
|
future = dist.reduce_scatter_tensor(grad_slice, grad, op=dist.ReduceOp.AVG, async_op=True).get_future()
|
|
param_infos[p] = dict(future=future, grad_slice=grad_slice, is_small=False)
|
|
return dict(param_infos=param_infos)
|
|
|
|
def _reduce_muon(self, group: dict, world_size: int) -> dict:
|
|
"""Launch async reduce op for Muon group. Returns info dict."""
|
|
params = group['params']
|
|
chunk_size = (len(params) + world_size - 1) // world_size
|
|
padded_num_params = chunk_size * world_size
|
|
p = params[0]
|
|
shape, device, dtype = p.shape, p.device, p.dtype
|
|
|
|
# Stack grads and zero-pad to padded_num_params
|
|
grad_stack = torch.stack([p.grad for p in params])
|
|
stacked_grads = torch.empty(padded_num_params, *shape, dtype=dtype, device=device)
|
|
stacked_grads[:len(params)].copy_(grad_stack)
|
|
if len(params) < padded_num_params:
|
|
stacked_grads[len(params):].zero_()
|
|
|
|
# Reduce_scatter to get this rank's chunk
|
|
grad_chunk = torch.empty(chunk_size, *shape, dtype=dtype, device=device)
|
|
future = dist.reduce_scatter_tensor(grad_chunk, stacked_grads, op=dist.ReduceOp.AVG, async_op=True).get_future()
|
|
|
|
return dict(future=future, grad_chunk=grad_chunk, stacked_grads=stacked_grads, chunk_size=chunk_size)
|
|
|
|
def _compute_adamw(self, group: dict, info: dict, gather_list: list, rank: int, world_size: int) -> None:
|
|
"""Wait for reduce, compute AdamW updates, launch gathers for large params."""
|
|
param_infos = info['param_infos']
|
|
for p in group['params']:
|
|
pinfo = param_infos[p]
|
|
pinfo['future'].wait()
|
|
grad_slice = pinfo['grad_slice']
|
|
state = self.state[p]
|
|
|
|
# For small params, operate on full param; for large, operate on slice
|
|
if pinfo['is_small']:
|
|
p_slice = p
|
|
else:
|
|
rank_size = p.shape[0] // world_size
|
|
p_slice = p[rank * rank_size:(rank + 1) * rank_size]
|
|
|
|
# State init
|
|
if not state:
|
|
state['step'] = 0
|
|
state['exp_avg'] = torch.zeros_like(p_slice)
|
|
state['exp_avg_sq'] = torch.zeros_like(p_slice)
|
|
state['step'] += 1
|
|
|
|
# Fill 0-D tensors and run fused kernel
|
|
self._adamw_step_t.fill_(state['step'])
|
|
self._adamw_lr_t.fill_(group['lr'])
|
|
self._adamw_beta1_t.fill_(group['betas'][0])
|
|
self._adamw_beta2_t.fill_(group['betas'][1])
|
|
self._adamw_eps_t.fill_(group['eps'])
|
|
self._adamw_wd_t.fill_(group['weight_decay'])
|
|
adamw_step_fused(
|
|
p_slice, grad_slice, state['exp_avg'], state['exp_avg_sq'],
|
|
self._adamw_step_t, self._adamw_lr_t, self._adamw_beta1_t,
|
|
self._adamw_beta2_t, self._adamw_eps_t, self._adamw_wd_t,
|
|
)
|
|
|
|
# Large params need all_gather
|
|
if not pinfo['is_small']:
|
|
future = dist.all_gather_into_tensor(p, p_slice, async_op=True).get_future()
|
|
gather_list.append(dict(future=future, params=None))
|
|
|
|
def _compute_muon(self, group: dict, info: dict, gather_list: list, rank: int) -> None:
|
|
"""Wait for reduce, compute Muon updates, launch gather."""
|
|
info['future'].wait()
|
|
params = group['params']
|
|
chunk_size = info['chunk_size']
|
|
grad_chunk = info['grad_chunk']
|
|
p = params[0]
|
|
shape, device, dtype = p.shape, p.device, p.dtype
|
|
|
|
# How many params does this rank own?
|
|
start_idx = rank * chunk_size
|
|
num_owned = min(chunk_size, max(0, len(params) - start_idx))
|
|
|
|
# Get or create group-level state
|
|
state = self.state[p]
|
|
if "momentum_buffer" not in state:
|
|
state["momentum_buffer"] = torch.zeros(chunk_size, *shape, dtype=dtype, device=device)
|
|
if "second_momentum_buffer" not in state:
|
|
state_shape = (chunk_size, shape[-2], 1) if shape[-2] >= shape[-1] else (chunk_size, 1, shape[-1])
|
|
state["second_momentum_buffer"] = torch.zeros(state_shape, dtype=dtype, device=device)
|
|
red_dim = -1 if shape[-2] >= shape[-1] else -2
|
|
|
|
# Build output buffer for all_gather
|
|
updated_params = torch.empty(chunk_size, *shape, dtype=dtype, device=device)
|
|
|
|
if num_owned > 0:
|
|
owned_params = [params[start_idx + i] for i in range(num_owned)]
|
|
stacked_owned = torch.stack(owned_params)
|
|
|
|
# Fill 0-D tensors and run fused kernel
|
|
self._muon_momentum_t.fill_(group["momentum"])
|
|
self._muon_beta2_t.fill_(group["beta2"])
|
|
self._muon_lr_t.fill_(group["lr"] * max(1.0, shape[-2] / shape[-1])**0.5)
|
|
self._muon_wd_t.fill_(group["weight_decay"])
|
|
muon_step_fused(
|
|
grad_chunk[:num_owned], stacked_owned,
|
|
state["momentum_buffer"][:num_owned], state["second_momentum_buffer"][:num_owned],
|
|
self._muon_momentum_t, self._muon_lr_t, self._muon_wd_t, self._muon_beta2_t,
|
|
group["ns_steps"], red_dim,
|
|
)
|
|
updated_params[:num_owned].copy_(stacked_owned)
|
|
|
|
if num_owned < chunk_size:
|
|
updated_params[num_owned:].zero_()
|
|
|
|
# Reuse stacked_grads buffer for all_gather output
|
|
stacked_params = info["stacked_grads"]
|
|
future = dist.all_gather_into_tensor(stacked_params, updated_params, async_op=True).get_future()
|
|
gather_list.append(dict(future=future, stacked_params=stacked_params, params=params))
|
|
|
|
def _finish_gathers(self, gather_list: list) -> None:
|
|
"""Wait for all gathers and copy Muon params back."""
|
|
for info in gather_list:
|
|
info["future"].wait()
|
|
if info["params"] is not None:
|
|
# Muon: copy from stacked buffer back to individual params
|
|
torch._foreach_copy_(info["params"], list(info["stacked_params"][:len(info["params"])].unbind(0)))
|
|
|
|
@torch.no_grad()
|
|
def step(self):
|
|
rank = dist.get_rank()
|
|
world_size = dist.get_world_size()
|
|
|
|
# Phase 1: launch all async reduce ops
|
|
reduce_infos: list[dict] = []
|
|
for group in self.param_groups:
|
|
if group['kind'] == 'adamw':
|
|
reduce_infos.append(self._reduce_adamw(group, world_size))
|
|
elif group['kind'] == 'muon':
|
|
reduce_infos.append(self._reduce_muon(group, world_size))
|
|
else:
|
|
raise ValueError(f"Unknown optimizer kind: {group['kind']}")
|
|
|
|
# Phase 2: wait for reduces, compute updates, launch gathers
|
|
gather_list: list[dict] = []
|
|
for group, info in zip(self.param_groups, reduce_infos):
|
|
if group['kind'] == 'adamw':
|
|
self._compute_adamw(group, info, gather_list, rank, world_size)
|
|
elif group['kind'] == 'muon':
|
|
self._compute_muon(group, info, gather_list, rank)
|
|
else:
|
|
raise ValueError(f"Unknown optimizer kind: {group['kind']}")
|
|
|
|
# Phase 3: wait for gathers, copy back
|
|
self._finish_gathers(gather_list)
|