nanochat/tasks/humaneval.py
2025-10-13 06:49:24 -07:00

98 lines
3.3 KiB
Python

"""
Evaluate the Chat model on HumanEval dataset.
Btw this dataset is a misnomer and has nothing to do with humans.
It is a coding benchmark.
"""
import re
from datasets import load_dataset
from nanochat.execution import execute_code
from tasks.common import Task
def extract_imports(prompt):
"""Extract import statements from the beginning of a code block."""
imports = []
for line in prompt.split('\n'):
stripped = line.strip()
if stripped.startswith('import ') or stripped.startswith('from '):
imports.append(stripped)
elif stripped and not stripped.startswith('#'):
# Stop at first non-import, non-comment line
break
return '\n'.join(imports)
def extract_program(completion):
"""
Extract Python code from LLM completion.
Handles various output formats:
- Code wrapped in ```python ... ``` or ``` ... ``` blocks
- Plain code without markdown blocks
- Extra text before/after code blocks
Returns the first code block if found, otherwise returns the whole completion.
"""
# Try to find markdown code blocks (```python or just ```)
# Match ```python\n...\n``` or ```\n...\n```
pattern = r'```(?:python)?\s*\n(.*?)\n```'
matches = re.findall(pattern, completion, re.DOTALL)
if matches:
# Return the first code block found
return matches[0].strip()
# No code blocks found, return the whole completion
return completion.strip()
class HumanEval(Task):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.ds = load_dataset("openai/openai_humaneval", split="test").shuffle(seed=42)
@property
def eval_type(self):
return 'generative'
def num_examples(self):
return len(self.ds)
def get_example(self, index):
""" Get a single problem from the dataset. """
row = self.ds[index]
prompt = row['prompt'] # prompts in HumanEval are the beginning of the program
solution = row['canonical_solution'] # the correct continuation of the program
entry_point = row['entry_point'] # the function to check
test = row['test'] # the test cases
complete_solution = f"{prompt}\n{solution}"
messages = [
{"role": "user", "content": prompt},
{"role": "assistant", "content": complete_solution},
]
conversation = {
"messages": messages,
"entry_point": entry_point, # needed during evaluation
"test": test, # needed during evaluation
}
return conversation
def evaluate(self, conversation, completion):
""" Given (conversation, completion), return boolean success of the completion. """
# the prompt will contain the imports and the function signature
imports = extract_imports(conversation['messages'][0]['content'])
# the completion will usually contain the whole function
# but not always with the needed imports, so we manually append them
completion_code = extract_program(completion)
program = (
imports
+ "\n\n"
+ completion_code
+ "\n\n"
+ conversation['test']
+ "\n"
+ f"check({conversation['entry_point']})"
)
result = execute_code(program)
success = result.success
return success