mirror of
https://github.com/karpathy/nanochat.git
synced 2025-12-06 04:12:13 +00:00
343 lines
15 KiB
Python
343 lines
15 KiB
Python
"""
|
|
Midtrain the model. Same as pretraining but simpler.
|
|
Run as:
|
|
|
|
python -m scripts.mid_train
|
|
|
|
Or torchrun for training:
|
|
|
|
torchrun --standalone --nproc_per_node=8 -m scripts.mid_train -- --device_batch_size=16
|
|
"""
|
|
|
|
import os
|
|
from collections import deque
|
|
|
|
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
|
import time
|
|
from contextlib import nullcontext
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
import wandb
|
|
|
|
from nanochat.checkpoint_manager import load_model, save_checkpoint
|
|
from nanochat.common import DummyWandb, autodetect_device_type, compute_cleanup, compute_init, get_base_dir, print0
|
|
from nanochat.loss_eval import evaluate_bpb
|
|
from nanochat.tokenizer import get_token_bytes
|
|
from tasks.common import TaskMixture
|
|
from tasks.customjson import CustomJSON
|
|
from tasks.gsm8k import GSM8K
|
|
from tasks.mmlu import MMLU
|
|
from tasks.smoltalk import SmolTalk
|
|
from tasks.spellingbee import SimpleSpelling, SpellingBee
|
|
|
|
# -----------------------------------------------------------------------------
|
|
run = "dummy" # wandb run name default ("dummy" is special - we won't log to wandb)
|
|
device_type = "" # cuda|cpu|mps (empty => autodetect)
|
|
model_tag = None # model tag to load the model from (base model or midtrained model)
|
|
step = None # step to load the model from (base model or midtrained model)
|
|
dtype = "bfloat16"
|
|
num_iterations = -1 # explicit number of steps of the optimization (-1 = disable)
|
|
max_seq_len = 2048
|
|
device_batch_size = 32
|
|
unembedding_lr = 0.004
|
|
embedding_lr = 0.2
|
|
matrix_lr = 0.02
|
|
init_lr_frac = 1.0 # initial learning rate is this fraction of the base learning rate
|
|
weight_decay = 0.0
|
|
eval_every = 150 # -1 = disable
|
|
eval_tokens = 20 * 524288
|
|
total_batch_size = 524288
|
|
dry_run = 0 # dry_run=1 is for experiments: we will log to wandb but we won't write checkpoints or report
|
|
config_keys = [k for k, v in globals().items() if not k.startswith('_') and isinstance(v, (int, float, bool, str))]
|
|
exec(open(os.path.join('nanochat', 'configurator.py')).read()) # overrides from command line or config file
|
|
user_config = {k: globals()[k] for k in config_keys} # possibly useful for logging
|
|
# -----------------------------------------------------------------------------
|
|
|
|
# Compute init
|
|
device_type = autodetect_device_type() if device_type == "" else device_type
|
|
ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init(device_type)
|
|
master_process = ddp_rank == 0
|
|
autocast_ctx = (
|
|
torch.amp.autocast(device_type=device_type, dtype=torch.bfloat16) if device_type == "cuda" else nullcontext()
|
|
)
|
|
synchronize = torch.cuda.synchronize if device_type == "cuda" else lambda: None
|
|
get_max_memory = torch.cuda.max_memory_allocated if device_type == "cuda" else lambda: 0
|
|
|
|
# wandb logging init
|
|
use_dummy_wandb = run == "dummy" or not master_process
|
|
wandb_run = DummyWandb() if use_dummy_wandb else wandb.init(project="nanochat-mid", name=run, config=user_config)
|
|
|
|
# Load the model and tokenizer
|
|
model, tokenizer, meta = load_model("base", device, phase="train", model_tag=model_tag, step=step)
|
|
pretrain_batch_size = meta.get("device_batch_size", None)
|
|
if pretrain_batch_size is not None and device_batch_size > pretrain_batch_size:
|
|
print0(
|
|
f"FOOTGUN WARNING: base model training used device_batch_size {pretrain_batch_size}, did you pass in a good --device_batch_size to this script?"
|
|
)
|
|
orig_model = model
|
|
model = torch.compile(model, dynamic=False)
|
|
depth = model.config.n_layer
|
|
num_flops_per_token = model.estimate_flops()
|
|
tokens_per_fwdbwd = device_batch_size * max_seq_len # tokens per iteration for a single rank
|
|
world_tokens_per_fwdbwd = tokens_per_fwdbwd * ddp_world_size # total tokens per iteration for all ranks
|
|
assert total_batch_size % world_tokens_per_fwdbwd == 0
|
|
grad_accum_steps = total_batch_size // world_tokens_per_fwdbwd
|
|
print0(f"Tokens / micro-batch / rank: {device_batch_size} x {max_seq_len} = {tokens_per_fwdbwd:,}")
|
|
print0(f"Tokens / micro-batch: {world_tokens_per_fwdbwd:,}")
|
|
print0(f"Total batch size {total_batch_size:,} => gradient accumulation steps: {grad_accum_steps}")
|
|
token_bytes = get_token_bytes(device=device)
|
|
|
|
# Initialize the Optimizer (Muon for Linear layers, AdamW for embedding and lm_head)
|
|
optimizers = model.setup_optimizers(
|
|
unembedding_lr=unembedding_lr, embedding_lr=embedding_lr, matrix_lr=matrix_lr, weight_decay=weight_decay
|
|
)
|
|
adamw_optimizer, muon_optimizer = optimizers
|
|
# Override the initial learning rate as a fraction of the base learning rate
|
|
for opt in optimizers:
|
|
for group in opt.param_groups:
|
|
group["lr"] = group["lr"] * init_lr_frac
|
|
group["initial_lr"] = group["lr"] # save the initial learning so we can decay easily later
|
|
|
|
# Midtraining data mixture and DataLoader
|
|
base_dir = get_base_dir()
|
|
identity_conversations_filepath = os.path.join(base_dir, "identity_conversations.jsonl")
|
|
train_dataset = TaskMixture(
|
|
[
|
|
SmolTalk(split="train"), # 460K rows of general conversations
|
|
MMLU(
|
|
subset="auxiliary_train", split="train"
|
|
), # 100K rows of multiple choice problems drawn from ARC, MC_TEST, OBQA, RACE
|
|
GSM8K(subset="main", split="train"), # 8K rows teaching simple math and (calculator) tool use
|
|
CustomJSON(filepath=identity_conversations_filepath), # 1000 rows of synthetic identity conversations
|
|
CustomJSON(filepath=identity_conversations_filepath), # let's do 2 epochs of these
|
|
SimpleSpelling(size=200000, split="train"), # 200K rows of Simple Spelling (e.g. spell the word 'apple')
|
|
SpellingBee(size=80000, split="train"), # 80K rows of Spelling Bee (e.g. how many 'r' are in 'strawberry'?)
|
|
]
|
|
) # total: 460K + 100K + 8K + 200K + 80K = 848K rows
|
|
val_dataset = TaskMixture(
|
|
[
|
|
SmolTalk(split="test"), # 24K rows in test set
|
|
MMLU(subset="all", split="test", stop=5200), # 14K rows in test set, use only 5.2K to match the train ratios
|
|
GSM8K(subset="main", split="test", stop=420), # 1.32K rows in test set, use only 420 to match the train ratios
|
|
]
|
|
) # total: 24K + 14K + 1.32K ~= 39K rows
|
|
# DataLoader is defined here, it emits inputs, targets : 2D tensors of shape (device_batch_size, max_seq_len)
|
|
# A big problem is that we don't know the final num_iterations in advance. So we create
|
|
# these two global variables and update them from within the data generator.
|
|
last_step = False # we will toggle this to True when we reach the end of the dataset
|
|
approx_progress = 0.0 # will go from 0 to 1 over the course of the epoch
|
|
|
|
|
|
def mid_data_generator(split):
|
|
global last_step, approx_progress
|
|
assert split in {"train", "val"}, "split must be 'train' or 'val'"
|
|
dataset = train_dataset if split == "train" else val_dataset
|
|
dataset_size = len(dataset)
|
|
assert dataset_size > 0
|
|
needed_tokens = device_batch_size * max_seq_len + 1 # to form one training batch of inputs,targets
|
|
token_buffer = deque()
|
|
# CUDA supports memory pinning for faster transfers between CPU and GPU:
|
|
scratch = torch.empty(needed_tokens, dtype=torch.int64, pin_memory=(device_type == "cuda"))
|
|
cursor = ddp_rank # increments by ddp_world_size each time, so each rank processes unique documents
|
|
it = 0 # iteration counter
|
|
while True:
|
|
# Accumulate enough tokens for one iteration before yielding
|
|
while len(token_buffer) < needed_tokens:
|
|
conversation = dataset[cursor]
|
|
ids, _ = tokenizer.render_conversation(conversation)
|
|
token_buffer.extend(ids)
|
|
cursor += ddp_world_size
|
|
if cursor >= dataset_size:
|
|
cursor -= dataset_size # wrap around for another epoch
|
|
if split == "train":
|
|
last_step = True # toggle last_step to True, which will terminate the training loop
|
|
# Stopping condition to respect num_iterations, if given
|
|
it += 1
|
|
if num_iterations > 0 and it >= num_iterations:
|
|
last_step = True # toggle last_step to True, which will terminate the training loop
|
|
# Build up inputs/targets and yield
|
|
for i in range(needed_tokens):
|
|
scratch[i] = token_buffer.popleft()
|
|
inputs_cpu = scratch[:-1].to(dtype=torch.int32)
|
|
targets_cpu = scratch[1:]
|
|
inputs = inputs_cpu.view(device_batch_size, max_seq_len).to(device=device, dtype=torch.int32, non_blocking=True)
|
|
targets = targets_cpu.view(device_batch_size, max_seq_len).to(
|
|
device=device, dtype=torch.int64, non_blocking=True
|
|
)
|
|
if split == "train":
|
|
if num_iterations > 0:
|
|
approx_progress = it / num_iterations # calculate progress from the max number of iterations
|
|
else:
|
|
approx_progress = cursor / dataset_size # approximate progress as a fraction of the dataset
|
|
yield inputs, targets
|
|
|
|
|
|
train_loader = mid_data_generator("train")
|
|
build_val_loader = lambda: mid_data_generator("val")
|
|
progress = 0 # will go from 0 to 1 over the course of the epoch
|
|
|
|
|
|
# Learning rate scheduler
|
|
def get_lr_multiplier(progress):
|
|
# first 80% of training: no decay, then linearly ramp down to 0.
|
|
return 1 if progress < 0.8 else 1 - (progress - 0.8) / 0.2
|
|
|
|
|
|
# Momentum scheduler for Muon optimizer
|
|
def get_muon_momentum(it):
|
|
frac = min(it / 300, 1)
|
|
momentum = (1 - frac) * 0.85 + frac * 0.95
|
|
return momentum
|
|
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# Training loop
|
|
x, y = next(train_loader) # prefetch the very first batch of data
|
|
min_val_bpb = float("inf")
|
|
smooth_train_loss = 0 # EMA of training loss
|
|
ema_beta = 0.9 # EMA decay factor
|
|
total_training_time = 0 # total wall-clock time of training
|
|
step = 0
|
|
while True:
|
|
flops_so_far = num_flops_per_token * total_batch_size * step
|
|
|
|
# Synchronize last_step across all ranks to avoid hangs in the distributed setting
|
|
if ddp:
|
|
last_step_tensor = torch.tensor(last_step, dtype=torch.int32, device=device)
|
|
dist.all_reduce(last_step_tensor, op=dist.ReduceOp.MAX)
|
|
last_step = bool(last_step_tensor.item())
|
|
|
|
# once in a while: evaluate the val bpb (all ranks participate)
|
|
if eval_every > 0 and (last_step or step % eval_every == 0):
|
|
model.eval()
|
|
val_loader = build_val_loader()
|
|
eval_steps = eval_tokens // (device_batch_size * max_seq_len * ddp_world_size)
|
|
with autocast_ctx:
|
|
val_bpb = evaluate_bpb(model, val_loader, eval_steps, token_bytes)
|
|
print0(f"Step {step:05d} | Validation bpb: {val_bpb:.4f}")
|
|
if val_bpb < min_val_bpb:
|
|
min_val_bpb = val_bpb
|
|
wandb_run.log(
|
|
{
|
|
"step": step,
|
|
"total_training_flops": flops_so_far,
|
|
"total_training_time": total_training_time,
|
|
"val/bpb": val_bpb,
|
|
}
|
|
)
|
|
model.train()
|
|
|
|
# save checkpoint at the end of the run (only on master process)
|
|
if master_process and last_step and not dry_run:
|
|
output_dirname = f"d{depth}" # e.g. d12
|
|
checkpoint_dir = os.path.join(base_dir, "mid_checkpoints", output_dirname)
|
|
save_checkpoint(
|
|
checkpoint_dir,
|
|
step,
|
|
orig_model.state_dict(),
|
|
[opt.state_dict() for opt in optimizers], # TODO: make sure saving across ranks is done correctly
|
|
{
|
|
"step": step,
|
|
"val_bpb": val_bpb, # loss at last step
|
|
"model_config": {
|
|
"sequence_len": max_seq_len,
|
|
"vocab_size": tokenizer.get_vocab_size(),
|
|
"n_layer": depth,
|
|
"n_head": model.config.n_head,
|
|
"n_kv_head": model.config.n_kv_head,
|
|
"n_embd": model.config.n_embd,
|
|
},
|
|
"user_config": user_config, # inputs to the training script
|
|
},
|
|
)
|
|
|
|
if last_step:
|
|
break
|
|
|
|
# -------------------------------------------------------------------------
|
|
# single training step
|
|
# evaluate the gradient
|
|
synchronize()
|
|
t0 = time.time()
|
|
for micro_step in range(grad_accum_steps):
|
|
with autocast_ctx:
|
|
loss = model(x, y)
|
|
train_loss = loss.detach() # for logging
|
|
loss = loss / grad_accum_steps # each .backward() is a grad sum => normalize loss here
|
|
loss.backward()
|
|
x, y = next(train_loader) # prefetch the next batch while the GPU is busy with forward/backward
|
|
progress = max(progress, approx_progress) # only increase progress monotonically
|
|
# step the optimizers
|
|
lrm = get_lr_multiplier(progress)
|
|
for opt in optimizers:
|
|
for group in opt.param_groups:
|
|
group["lr"] = group["initial_lr"] * lrm
|
|
muon_momentum = get_muon_momentum(step)
|
|
for group in muon_optimizer.param_groups:
|
|
group["momentum"] = muon_momentum
|
|
for opt in optimizers:
|
|
opt.step()
|
|
model.zero_grad(set_to_none=True)
|
|
synchronize()
|
|
t1 = time.time()
|
|
dt = t1 - t0
|
|
# -------------------------------------------------------------------------
|
|
|
|
# State
|
|
step += 1
|
|
|
|
# logging
|
|
smooth_train_loss = ema_beta * smooth_train_loss + (1 - ema_beta) * train_loss.item() # EMA the training loss
|
|
debiased_smooth_loss = smooth_train_loss / (1 - ema_beta ** (step + 1)) # debias the EMA
|
|
pct_done = 100 * progress
|
|
tok_per_sec = int(total_batch_size / dt)
|
|
flops_per_sec = num_flops_per_token * total_batch_size / dt
|
|
promised_flops_per_sec_h100 = 989e12 * ddp_world_size # bfloat16 H100 SXM and without 2:4 sparsity
|
|
mfu = 100 * flops_per_sec / promised_flops_per_sec_h100 # in %
|
|
if step > 10:
|
|
total_training_time += dt # only count the time after the first 10 steps
|
|
print0(
|
|
f"step {step:05d} ({pct_done:.2f}%) | loss: {debiased_smooth_loss:.6f} | lrm: {lrm:.2f} | dt: {dt * 1000:.2f}ms | tok/sec: {tok_per_sec:,} | mfu: {mfu:.2f} | total time: {total_training_time / 60:.2f}m"
|
|
)
|
|
if step % 10 == 0:
|
|
wandb_run.log(
|
|
{
|
|
"step": step,
|
|
"total_training_flops": flops_so_far,
|
|
"total_training_time": total_training_time,
|
|
"train/loss": debiased_smooth_loss,
|
|
"train/lrm": lrm,
|
|
"train/dt": dt,
|
|
"train/tok_per_sec": tok_per_sec,
|
|
"train/mfu": mfu,
|
|
}
|
|
)
|
|
|
|
# print a few more stats
|
|
print0(f"Peak memory usage: {get_max_memory() / 1024 / 1024:.2f}MiB")
|
|
print0(f"Total training time: {total_training_time / 60:.2f}m")
|
|
print0(f"Minimum validation bpb: {min_val_bpb:.4f}")
|
|
|
|
# Log to report
|
|
if not dry_run:
|
|
from nanochat.report import get_report
|
|
|
|
get_report().log(
|
|
section="Midtraining",
|
|
data=[
|
|
user_config, # CLI args
|
|
{ # stats about the training setup
|
|
"Number of iterations": step,
|
|
"DDP world size": ddp_world_size,
|
|
},
|
|
{ # stats about training outcomes
|
|
"Minimum validation bpb": min_val_bpb,
|
|
},
|
|
],
|
|
)
|
|
|
|
# cleanup
|
|
wandb_run.finish() # wandb run finish
|
|
compute_cleanup()
|