mirror of
https://github.com/karpathy/nanochat.git
synced 2025-12-06 04:12:13 +00:00
329 lines
15 KiB
Python
329 lines
15 KiB
Python
"""
|
|
GPT model (rewrite, a lot simpler)
|
|
Notable features:
|
|
- rotary embeddings (and no positional embeddings)
|
|
- QK norm
|
|
- untied weights for token embedding and lm_head
|
|
- relu^2 activation in MLP
|
|
- norm after token embedding
|
|
- no learnable params in rmsnorm
|
|
- no bias in linear layers
|
|
- Group-Query Attention (GQA) support for more efficient inference
|
|
"""
|
|
|
|
import math
|
|
from dataclasses import dataclass
|
|
from functools import partial
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from nanochat.adamw import DistAdamW
|
|
from nanochat.common import get_dist_info
|
|
from nanochat.muon import DistMuon, Muon
|
|
|
|
|
|
@dataclass
|
|
class GPTConfig:
|
|
sequence_len: int = 1024
|
|
vocab_size: int = 50304
|
|
n_layer: int = 12
|
|
n_head: int = 6 # number of query heads
|
|
n_kv_head: int = 6 # number of key/value heads (GQA)
|
|
n_embd: int = 768
|
|
|
|
|
|
def norm(x):
|
|
# Purely functional rmsnorm with no learnable params
|
|
return F.rms_norm(x, (x.size(-1),))
|
|
|
|
|
|
def apply_rotary_emb(x, cos, sin):
|
|
assert x.ndim == 4 # multihead attention
|
|
d = x.shape[3] // 2
|
|
x1, x2 = x[..., :d], x[..., d:] # split up last time into two halves
|
|
y1 = x1 * cos + x2 * sin # rotate pairs of dims
|
|
y2 = x1 * (-sin) + x2 * cos
|
|
out = torch.cat([y1, y2], 3) # re-assemble
|
|
out = out.to(x.dtype) # ensure input/output dtypes match
|
|
return out
|
|
|
|
|
|
class CausalSelfAttention(nn.Module):
|
|
def __init__(self, config, layer_idx):
|
|
super().__init__()
|
|
self.layer_idx = layer_idx
|
|
self.n_head = config.n_head
|
|
self.n_kv_head = config.n_kv_head
|
|
self.n_embd = config.n_embd
|
|
self.head_dim = self.n_embd // self.n_head
|
|
assert self.n_embd % self.n_head == 0
|
|
assert self.n_kv_head <= self.n_head and self.n_head % self.n_kv_head == 0
|
|
self.c_q = nn.Linear(self.n_embd, self.n_head * self.head_dim, bias=False)
|
|
self.c_k = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False)
|
|
self.c_v = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False)
|
|
self.c_proj = nn.Linear(self.n_embd, self.n_embd, bias=False)
|
|
|
|
def forward(self, x, cos_sin, kv_cache):
|
|
B, T, C = x.size()
|
|
|
|
# Project the input to get queries, keys, and values
|
|
q = self.c_q(x).view(B, T, self.n_head, self.head_dim)
|
|
k = self.c_k(x).view(B, T, self.n_kv_head, self.head_dim)
|
|
v = self.c_v(x).view(B, T, self.n_kv_head, self.head_dim)
|
|
|
|
# Apply Rotary Embeddings to queries and keys to get relative positional encoding
|
|
cos, sin = cos_sin
|
|
q, k = apply_rotary_emb(q, cos, sin), apply_rotary_emb(k, cos, sin) # QK rotary embedding
|
|
q, k = norm(q), norm(k) # QK norm
|
|
q, k, v = (
|
|
q.transpose(1, 2),
|
|
k.transpose(1, 2),
|
|
v.transpose(1, 2),
|
|
) # make head be batch dim, i.e. (B, T, H, D) -> (B, H, T, D)
|
|
|
|
# Apply KV cache: insert current k,v into cache, get the full view so far
|
|
if kv_cache is not None:
|
|
k, v = kv_cache.insert_kv(self.layer_idx, k, v)
|
|
Tq = q.size(2) # number of queries in this forward pass
|
|
Tk = k.size(2) # number of keys/values in total (in the cache + current forward pass)
|
|
|
|
# Attention: queries attend to keys/values autoregressively. A few cases to handle:
|
|
enable_gqa = (
|
|
self.n_head != self.n_kv_head
|
|
) # Group Query Attention (GQA): duplicate key/value heads to match query heads if desired
|
|
if kv_cache is None or Tq == Tk:
|
|
# During training (no KV cache), attend as usual with causal attention
|
|
# And even if there is KV cache, we can still use this simple version when Tq == Tk
|
|
y = F.scaled_dot_product_attention(q, k, v, is_causal=True, enable_gqa=enable_gqa)
|
|
elif Tq == 1:
|
|
# During inference but with a single query in this forward pass:
|
|
# The query has to attend to all the keys/values in the cache
|
|
y = F.scaled_dot_product_attention(q, k, v, is_causal=False, enable_gqa=enable_gqa)
|
|
else:
|
|
# During inference AND we have a chunk of queries in this forward pass:
|
|
# First, each query attends to all the cached keys/values (i.e. full prefix)
|
|
attn_mask = torch.zeros((Tq, Tk), dtype=torch.bool, device=q.device) # True = keep, False = mask
|
|
prefix_len = Tk - Tq
|
|
if prefix_len > 0: # can't be negative but could be zero
|
|
attn_mask[:, :prefix_len] = True
|
|
# Then, causal attention within this chunk
|
|
attn_mask[:, prefix_len:] = torch.tril(torch.ones((Tq, Tq), dtype=torch.bool, device=q.device))
|
|
y = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, enable_gqa=enable_gqa)
|
|
|
|
# Re-assemble the heads side by side and project back to residual stream
|
|
y = y.transpose(1, 2).contiguous().view(B, T, -1)
|
|
y = self.c_proj(y)
|
|
return y
|
|
|
|
|
|
class MLP(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=False)
|
|
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=False)
|
|
|
|
def forward(self, x):
|
|
x = self.c_fc(x)
|
|
x = F.relu(x).square()
|
|
x = self.c_proj(x)
|
|
return x
|
|
|
|
|
|
class Block(nn.Module):
|
|
def __init__(self, config, layer_idx):
|
|
super().__init__()
|
|
self.attn = CausalSelfAttention(config, layer_idx)
|
|
self.mlp = MLP(config)
|
|
|
|
def forward(self, x, cos_sin, kv_cache):
|
|
x = x + self.attn(norm(x), cos_sin, kv_cache)
|
|
x = x + self.mlp(norm(x))
|
|
return x
|
|
|
|
|
|
class GPT(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
self.transformer = nn.ModuleDict(
|
|
{
|
|
"wte": nn.Embedding(config.vocab_size, config.n_embd),
|
|
"h": nn.ModuleList([Block(config, layer_idx) for layer_idx in range(config.n_layer)]),
|
|
}
|
|
)
|
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
|
# To support meta device initialization, we init the rotary embeddings here, but it's fake
|
|
# As for rotary_seq_len, these rotary embeddings are pretty small/cheap in memory,
|
|
# so let's just over-compute them, but assert fail if we ever reach that amount.
|
|
# In the future we can dynamically grow the cache, for now it's fine.
|
|
self.rotary_seq_len = config.sequence_len * 10 # 10X over-compute should be enough, TODO make nicer?
|
|
head_dim = config.n_embd // config.n_head
|
|
cos, sin = self._precompute_rotary_embeddings(self.rotary_seq_len, head_dim)
|
|
self.register_buffer("cos", cos, persistent=False) # persistent=False means it's not saved to the checkpoint
|
|
self.register_buffer("sin", sin, persistent=False)
|
|
|
|
def init_weights(self):
|
|
self.apply(self._init_weights)
|
|
# zero out classifier weights
|
|
torch.nn.init.zeros_(self.lm_head.weight)
|
|
# zero out c_proj weights in all blocks
|
|
for block in self.transformer.h:
|
|
torch.nn.init.zeros_(block.mlp.c_proj.weight)
|
|
torch.nn.init.zeros_(block.attn.c_proj.weight)
|
|
# init the rotary embeddings
|
|
head_dim = self.config.n_embd // self.config.n_head
|
|
cos, sin = self._precompute_rotary_embeddings(self.rotary_seq_len, head_dim)
|
|
self.cos, self.sin = cos, sin
|
|
# Cast the embeddings from fp32 to bf16: optim can tolerate it and it saves memory: both in the model and the activations
|
|
if self.transformer.wte.weight.device.type == "cuda":
|
|
self.transformer.wte.to(dtype=torch.bfloat16)
|
|
|
|
def _init_weights(self, module):
|
|
if isinstance(module, nn.Linear):
|
|
# https://arxiv.org/pdf/2310.17813
|
|
fan_out = module.weight.size(0)
|
|
fan_in = module.weight.size(1)
|
|
std = 1.0 / math.sqrt(fan_in) * min(1.0, math.sqrt(fan_out / fan_in))
|
|
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
|
|
if module.bias is not None:
|
|
torch.nn.init.zeros_(module.bias)
|
|
elif isinstance(module, nn.Embedding):
|
|
torch.nn.init.normal_(module.weight, mean=0.0, std=1.0)
|
|
|
|
# TODO: bump base theta more, e.g. 100K is more common more recently
|
|
def _precompute_rotary_embeddings(self, seq_len, head_dim, base=10000, device=None):
|
|
# autodetect the device from model embeddings
|
|
if device is None:
|
|
device = self.transformer.wte.weight.device
|
|
# stride the channels
|
|
channel_range = torch.arange(0, head_dim, 2, dtype=torch.float32, device=device)
|
|
inv_freq = 1.0 / (base ** (channel_range / head_dim))
|
|
# stride the time steps
|
|
t = torch.arange(seq_len, dtype=torch.float32, device=device)
|
|
# calculate the rotation frequencies at each (time, channel) pair
|
|
freqs = torch.outer(t, inv_freq)
|
|
cos, sin = freqs.cos(), freqs.sin()
|
|
cos, sin = cos.bfloat16(), sin.bfloat16() # keep them in bfloat16
|
|
cos, sin = cos[None, :, None, :], sin[None, :, None, :] # add batch and head dims for later broadcasting
|
|
return cos, sin
|
|
|
|
def get_device(self):
|
|
return self.transformer.wte.weight.device
|
|
|
|
def estimate_flops(self):
|
|
"""Return the estimated FLOPs per token for the model. Ref: https://arxiv.org/abs/2204.02311"""
|
|
nparams = sum(p.numel() for p in self.parameters())
|
|
nparams_embedding = self.transformer.wte.weight.numel()
|
|
l, h, q, t = (
|
|
self.config.n_layer,
|
|
self.config.n_head,
|
|
self.config.n_embd // self.config.n_head,
|
|
self.config.sequence_len,
|
|
)
|
|
num_flops_per_token = 6 * (nparams - nparams_embedding) + 12 * l * h * q * t
|
|
return num_flops_per_token
|
|
|
|
def setup_optimizers(self, unembedding_lr=0.004, embedding_lr=0.2, matrix_lr=0.02, weight_decay=0.0):
|
|
model_dim = self.config.n_embd
|
|
ddp, rank, local_rank, world_size = get_dist_info()
|
|
# Separate out all parameters into 3 groups (matrix, embedding, lm_head)
|
|
matrix_params = list(self.transformer.h.parameters())
|
|
embedding_params = list(self.transformer.wte.parameters())
|
|
lm_head_params = list(self.lm_head.parameters())
|
|
assert len(list(self.parameters())) == len(matrix_params) + len(embedding_params) + len(lm_head_params)
|
|
# Create the AdamW optimizer for the embedding and lm_head
|
|
# Scale the LR for the AdamW parameters by ∝1/√dmodel (having tuned the LRs for 768 dim model)
|
|
dmodel_lr_scale = (model_dim / 768) ** -0.5
|
|
if rank == 0:
|
|
print(f"Scaling the LR for the AdamW parameters ∝1/√({model_dim}/768) = {dmodel_lr_scale:.6f}")
|
|
adam_groups = [
|
|
dict(params=lm_head_params, lr=unembedding_lr * dmodel_lr_scale),
|
|
dict(params=embedding_params, lr=embedding_lr * dmodel_lr_scale),
|
|
]
|
|
adamw_kwargs = dict(betas=(0.8, 0.95), eps=1e-10, weight_decay=weight_decay)
|
|
AdamWFactory = DistAdamW if ddp else partial(torch.optim.AdamW, fused=True)
|
|
adamw_optimizer = AdamWFactory(adam_groups, **adamw_kwargs)
|
|
# Create the Muon optimizer for the linear layers
|
|
muon_kwargs = dict(lr=matrix_lr, momentum=0.95)
|
|
MuonFactory = DistMuon if ddp else Muon
|
|
muon_optimizer = MuonFactory(matrix_params, **muon_kwargs)
|
|
# Combine them the two optimizers into one list
|
|
optimizers = [adamw_optimizer, muon_optimizer]
|
|
for opt in optimizers:
|
|
for group in opt.param_groups:
|
|
group["initial_lr"] = group["lr"]
|
|
return optimizers
|
|
|
|
def forward(self, idx, targets=None, kv_cache=None, loss_reduction='mean'):
|
|
B, T = idx.size()
|
|
|
|
# Grab the rotary embeddings for the current sequence length (they are of shape (1, seq_len, 1, head_dim/2))
|
|
assert T <= self.cos.size(1), (
|
|
f"Sequence length grew beyond the rotary embeddings cache: {T} > {self.cos.size(1)}"
|
|
)
|
|
assert idx.device == self.cos.device, (
|
|
f"Rotary embeddings and idx are on different devices: {idx.device} != {self.cos.device}"
|
|
)
|
|
assert self.cos.dtype == torch.bfloat16, "Rotary embeddings must be in bfloat16"
|
|
# if kv cache exists, we need to offset the rotary embeddings to the current position in the cache
|
|
T0 = 0 if kv_cache is None else kv_cache.get_pos()
|
|
cos_sin = self.cos[:, T0 : T0 + T], self.sin[:, T0 : T0 + T] # truncate cache to current sequence length
|
|
|
|
# Forward the trunk of the Transformer
|
|
x = self.transformer.wte(idx)
|
|
x = norm(x)
|
|
for block in self.transformer.h:
|
|
x = block(x, cos_sin, kv_cache)
|
|
x = norm(x)
|
|
|
|
# Forward the lm_head (compute logits)
|
|
softcap = 15
|
|
if targets is not None:
|
|
# training mode: compute and return the loss
|
|
# TODO: experiment with Liger Kernels / chunked cross-entropy etc.
|
|
logits = self.lm_head(x)
|
|
logits = softcap * torch.tanh(logits / softcap) # logits softcap
|
|
logits = logits.float() # use tf32/fp32 for logits
|
|
loss = F.cross_entropy(
|
|
logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1, reduction=loss_reduction
|
|
)
|
|
return loss
|
|
else:
|
|
# inference mode: compute and return the logits
|
|
logits = self.lm_head(x)
|
|
logits = softcap * torch.tanh(logits / softcap) # logits softcap
|
|
return logits
|
|
|
|
@torch.inference_mode()
|
|
def generate(self, tokens, max_tokens, temperature=1.0, top_k=None, seed=42):
|
|
"""
|
|
Naive autoregressive streaming inference.
|
|
To make it super simple, let's assume:
|
|
- batch size is 1
|
|
- ids and the yielded tokens are simple Python lists and ints
|
|
"""
|
|
assert isinstance(tokens, list)
|
|
device = self.get_device()
|
|
rng = None
|
|
if temperature > 0:
|
|
rng = torch.Generator(device=device)
|
|
rng.manual_seed(seed)
|
|
ids = torch.tensor([tokens], dtype=torch.long, device=device) # add batch dim
|
|
for _ in range(max_tokens):
|
|
logits = self.forward(ids) # (B, T, vocab_size)
|
|
logits = logits[:, -1, :] # (B, vocab_size)
|
|
if top_k is not None:
|
|
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
|
logits[logits < v[:, [-1]]] = -float('Inf')
|
|
if temperature > 0:
|
|
logits = logits / temperature
|
|
probs = F.softmax(logits, dim=-1)
|
|
next_ids = torch.multinomial(probs, num_samples=1, generator=rng)
|
|
else:
|
|
next_ids = torch.argmax(logits, dim=-1, keepdim=True)
|
|
ids = torch.cat((ids, next_ids), dim=1)
|
|
token = next_ids.item()
|
|
yield token
|