mirror of
https://github.com/karpathy/nanochat.git
synced 2025-12-06 04:12:13 +00:00
132 lines
5.8 KiB
Bash
Executable File
132 lines
5.8 KiB
Bash
Executable File
#!/bin/bash
|
|
|
|
# This script is the "Best ChatGPT clone that $100 can buy",
|
|
# It is designed to run in ~4 hours on 8XH100 node at $3/GPU/hour.
|
|
|
|
# 1) Example launch (simplest):
|
|
# bash speedrun.sh
|
|
# 2) Example launch in a screen session (because the run takes ~4 hours):
|
|
# screen -L -Logfile speedrun.log -S speedrun bash speedrun.sh
|
|
# 3) Example launch with wandb logging, but see below for setting up wandb first:
|
|
# WANDB_RUN=speedrun screen -L -Logfile speedrun.log -S speedrun bash speedrun.sh
|
|
|
|
# Default intermediate artifacts directory is in ~/.cache/nanochat
|
|
export OMP_NUM_THREADS=1
|
|
export NANOCHAT_BASE_DIR="$HOME/.cache/nanochat"
|
|
mkdir -p $NANOCHAT_BASE_DIR
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# Python venv setup with uv
|
|
|
|
# install uv (if not already installed)
|
|
command -v uv &> /dev/null || curl -LsSf https://astral.sh/uv/install.sh | sh
|
|
# create a .venv local virtual environment (if it doesn't exist) and install the repo dependencies
|
|
uv sync
|
|
# activate venv so that `python` uses the project's venv instead of system python
|
|
source .venv/bin/activate
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# wandb setup
|
|
# If you wish to use wandb for logging (it's nice!, recommended).
|
|
# 1) Make sure to first log in to wandb, e.g. run:
|
|
# `wandb login`
|
|
# 2) Set the WANDB_RUN environment variable when running this script, e.g.:
|
|
# `WANDB_RUN=d26 bash speedrun.sh`
|
|
if [ -z "$WANDB_RUN" ]; then
|
|
# by default use "dummy" : it's handled as a special case, skips logging to wandb
|
|
WANDB_RUN=dummy
|
|
fi
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# During the course of the run, we will be writing markdown reports to the report/
|
|
# directory in the base dir. This command clears it out and writes a header section
|
|
# with a bunch of system info and a timestamp that marks the start of the run.
|
|
python -m nanochat.report reset
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# Tokenizer
|
|
|
|
# Install Rust / Cargo
|
|
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y
|
|
source "$HOME/.cargo/env"
|
|
|
|
# Build the rustbpe Tokenizer
|
|
uv run maturin develop --release --manifest-path rustbpe/Cargo.toml
|
|
|
|
# Download the first ~2B characters of pretraining dataset
|
|
# look at dev/repackage_data_reference.py for details on how this data was prepared
|
|
# each data shard is ~250M chars
|
|
# so we download 2e9 / 250e6 = 8 data shards at this point
|
|
# each shard is ~100MB of text (compressed), so this is about ~800MB of data on disk
|
|
python -m nanochat.dataset -n 8
|
|
# Immediately also kick off downloading more shards in the background while tokenizer trains
|
|
# See comment below for why 240 is the right number here
|
|
python -m nanochat.dataset -n 240 &
|
|
DATASET_DOWNLOAD_PID=$!
|
|
# train the tokenizer with vocab size 2**16 = 65536 on ~2B characters of data
|
|
python -m scripts.tok_train --max_chars=2000000000
|
|
# evaluate the tokenizer (report compression ratio etc.)
|
|
python -m scripts.tok_eval
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# Base model (pretraining)
|
|
|
|
# Download the eval_bundle from s3 to evaluate CORE metric during training (~162MB)
|
|
EVAL_BUNDLE_URL=https://karpathy-public.s3.us-west-2.amazonaws.com/eval_bundle.zip
|
|
if [ ! -d "$NANOCHAT_BASE_DIR/eval_bundle" ]; then
|
|
curl -L -o eval_bundle.zip $EVAL_BUNDLE_URL
|
|
unzip -q eval_bundle.zip
|
|
rm eval_bundle.zip
|
|
mv eval_bundle $NANOCHAT_BASE_DIR
|
|
fi
|
|
|
|
# The d20 model is 561M parameters.
|
|
# Chinchilla says #tokens = 20X #params, so we need 561e6 * 20 = 11.2B tokens.
|
|
# Assume our tokenizer is 4.8 chars/token, this is 11.2B * 4.8 ~= 54B chars.
|
|
# At 250M chars/shard, this is 54B / 250M ~= 216 shards needed for pretraining.
|
|
# Round up to 240 for safety. At ~100MB/shard, this downloads ~24GB of data to disk.
|
|
# (The total number of shards available in the entire dataset is 1822.)
|
|
echo "Waiting for dataset download to complete..."
|
|
wait $DATASET_DOWNLOAD_PID
|
|
|
|
# pretrain the d20 model
|
|
torchrun --standalone --nproc_per_node=8 -m scripts.base_train -- --depth=20 --run=$WANDB_RUN
|
|
# evaluate the model on a larger chunk of train/val data and draw some samples
|
|
torchrun --standalone --nproc_per_node=8 -m scripts.base_loss
|
|
# evaluate the model on CORE tasks
|
|
torchrun --standalone --nproc_per_node=8 -m scripts.base_eval
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# Midtraining (teach the model conversation special tokens, tool use, multiple choice)
|
|
|
|
# run midtraining and eval the model
|
|
torchrun --standalone --nproc_per_node=8 -m scripts.mid_train -- --run=$WANDB_RUN
|
|
torchrun --standalone --nproc_per_node=8 -m scripts.chat_eval -- -i mid
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# Supervised Finetuning (domain adaptation to each sequence all by itself per row)
|
|
|
|
# train sft and re-eval right away (should see a small bump)
|
|
torchrun --standalone --nproc_per_node=8 -m scripts.chat_sft -- --run=$WANDB_RUN
|
|
torchrun --standalone --nproc_per_node=8 -m scripts.chat_eval -- -i sft
|
|
|
|
# chat with the model over CLI! Leave out the -p to chat interactively
|
|
# python -m scripts.chat_cli -p "Why is the sky blue?"
|
|
|
|
# even better, chat with your model over a pretty WebUI ChatGPT style
|
|
# python -m scripts.chat_web
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# Reinforcement Learning. Optional, and currently only on GSM8K
|
|
# (optional)
|
|
|
|
# run reinforcement learning
|
|
# torchrun --standalone --nproc_per_node=8 -m scripts.chat_rl -- --run=$WANDB_RUN
|
|
# eval the RL model only on GSM8K
|
|
# torchrun --standalone --nproc_per_node=8 -m scripts.chat_eval -- -i rl -a GSM8K
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# Generate the full report by putting together all the sections
|
|
# report.md is the output and will be copied to current directory for convenience
|
|
python -m nanochat.report generate
|