mirror of
https://github.com/karpathy/nanochat.git
synced 2025-12-06 04:12:13 +00:00
150 lines
6.6 KiB
Python
150 lines
6.6 KiB
Python
import os
|
|
import subprocess
|
|
import argparse
|
|
import shutil
|
|
from google.cloud import storage
|
|
|
|
def download_directory_from_gcs(bucket_name, gcs_path, local_path):
|
|
storage_client = storage.Client()
|
|
bucket = storage_client.bucket(bucket_name)
|
|
blobs = bucket.list_blobs(prefix=gcs_path)
|
|
for blob in blobs:
|
|
if blob.name.endswith("/"):
|
|
continue
|
|
relative_path = os.path.relpath(blob.name, gcs_path)
|
|
local_file = os.path.join(local_path, relative_path)
|
|
os.makedirs(os.path.dirname(local_file), exist_ok=True)
|
|
blob.download_to_filename(local_file)
|
|
print(f"Downloaded gs://{bucket_name}/{blob.name} to {local_file}")
|
|
|
|
def upload_directory_to_gcs(local_path, bucket_name, gcs_path):
|
|
storage_client = storage.Client()
|
|
bucket = storage_client.bucket(bucket_name)
|
|
for root, _, files in os.walk(local_path):
|
|
for file in files:
|
|
local_file = os.path.join(root, file)
|
|
relative_path = os.path.relpath(local_file, local_path)
|
|
blob_path = os.path.join(gcs_path, relative_path)
|
|
blob = bucket.blob(blob_path)
|
|
blob.upload_from_file(open(local_file, 'rb'))
|
|
print(f"Uploaded {local_file} to gs://{bucket_name}/{blob_path}")
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--gcs-bucket", type=str, required=True, help="GCS bucket for artifacts")
|
|
parser.add_argument("--wandb-run", type=str, default="dummy", help="Wandb run name")
|
|
parser.add_argument("--vertex-experiment", type=str, default="", help="Vertex AI experiment name")
|
|
parser.add_argument("--vertex-tensorboard", type=str, default="", help="Vertex AI TensorBoard resource name")
|
|
parser.add_argument("--device-batch-size", type=int, default=16, help="Device batch size")
|
|
args = parser.parse_args()
|
|
|
|
# Parse bucket name and prefix
|
|
if args.gcs_bucket.startswith("gs://"):
|
|
bucket_name = args.gcs_bucket.replace("gs://", "").split("/")[0]
|
|
prefix_parts = args.gcs_bucket.replace("gs://", "").split("/")[1:]
|
|
prefix = "/".join(prefix_parts) if prefix_parts else ""
|
|
else:
|
|
bucket_name = args.gcs_bucket
|
|
prefix = ""
|
|
|
|
# Check if midtraining checkpoint already exists (checkpoint detection)
|
|
storage_client = storage.Client()
|
|
bucket = storage_client.bucket(bucket_name)
|
|
gcs_mid_ckpt_path = os.path.join(prefix, "mid_checkpoints") if prefix else "mid_checkpoints"
|
|
|
|
# Check for model.pt (the key checkpoint file)
|
|
# Note: mid_train.py saves to f"d{depth}" where depth defaults to 20 (inherited from base model)
|
|
depth = 20
|
|
gcs_mid_ckpt_path = os.path.join(gcs_mid_ckpt_path, f"d{depth}")
|
|
checkpoint_exists = bucket.blob(os.path.join(gcs_mid_ckpt_path, "model.pt")).exists()
|
|
|
|
if checkpoint_exists:
|
|
print(f"✓ Midtraining checkpoint already exists in gs://{bucket_name}/{gcs_mid_ckpt_path}")
|
|
print("Skipping midtraining (already completed)")
|
|
return
|
|
|
|
print(f"Midtraining checkpoint not found. Running midtraining...")
|
|
|
|
# Set local tmp dir for temporary files
|
|
local_base_dir = "/tmp/nanochat"
|
|
os.makedirs(local_base_dir, exist_ok=True)
|
|
|
|
# Download tokenizer from GCS
|
|
print("Downloading tokenizer from GCS...")
|
|
gcs_tokenizer_path = os.path.join(prefix, "tokenizer") if prefix else "tokenizer"
|
|
local_tokenizer_dir = os.path.join(local_base_dir, "tokenizer")
|
|
download_directory_from_gcs(bucket_name, gcs_tokenizer_path, local_tokenizer_dir)
|
|
|
|
# Download base checkpoints from GCS
|
|
print("Downloading base checkpoints from GCS...")
|
|
gcs_base_checkpoints_path = os.path.join(prefix, "base_checkpoints") if prefix else "base_checkpoints"
|
|
local_base_checkpoints_dir = os.path.join(local_base_dir, "base_checkpoints")
|
|
download_directory_from_gcs(bucket_name, gcs_base_checkpoints_path, local_base_checkpoints_dir)
|
|
|
|
# Download report dir from GCS
|
|
print("Downloading report dir from GCS...")
|
|
gcs_report_path = os.path.join(prefix, "report") if prefix else "report"
|
|
local_report_dir = os.path.join(local_base_dir, "report")
|
|
download_directory_from_gcs(bucket_name, gcs_report_path, local_report_dir)
|
|
# Ensure report directory exists even if nothing was downloaded
|
|
os.makedirs(local_report_dir, exist_ok=True)
|
|
|
|
try:
|
|
# Download the identity conversations dataset.
|
|
# This is needed for midtraining.
|
|
# We can download it to local base dir or just let the script handle it if it downloads from URL.
|
|
# scripts/mid_train.py doesn't seem to download it automatically?
|
|
# Let's check mid_train.py later. Assuming the previous code was correct about downloading it.
|
|
# The previous code had:
|
|
# subprocess.run(["curl", "-L", "-o", f"{get_base_dir()}/identity_conversations.jsonl", ...])
|
|
# I'll include that.
|
|
print("Downloading identity conversations...")
|
|
subprocess.run([
|
|
"curl", "-L", "-o",
|
|
f"{local_base_dir}/identity_conversations.jsonl",
|
|
"https://karpathy-public.s3.us-west-2.amazonaws.com/identity_conversations.jsonl"
|
|
], check=True)
|
|
|
|
# Mid-train the model.
|
|
print("Starting midtraining...")
|
|
env = os.environ.copy()
|
|
env["NANOCHAT_BASE_DIR"] = local_base_dir
|
|
subprocess.run([
|
|
"torchrun", "--standalone", "--nproc_per_node=1",
|
|
"-m", "scripts.mid_train",
|
|
f"--device_batch_size={args.device_batch_size}",
|
|
f"--wandb_run_name={args.wandb_run}",
|
|
f"--vertex_experiment={args.vertex_experiment}",
|
|
f"--vertex_tensorboard={args.vertex_tensorboard}"
|
|
], check=True, env=env)
|
|
|
|
# Evaluate the model.
|
|
print("Running chat_eval (mid)...")
|
|
subprocess.run([
|
|
"torchrun", "--standalone", "--nproc_per_node=1",
|
|
"-m", "scripts.chat_eval", "--",
|
|
"-i", "mid"
|
|
], check=True, env=env)
|
|
|
|
except subprocess.CalledProcessError as e:
|
|
print(f"Error during midtraining steps: {e}")
|
|
raise
|
|
|
|
# Upload checkpoints to GCS
|
|
print("Uploading artifacts to GCS...")
|
|
|
|
# Upload mid_checkpoints
|
|
local_checkpoints_dir = os.path.join(local_base_dir, "mid_checkpoints")
|
|
gcs_checkpoints_path = os.path.join(prefix, "mid_checkpoints") if prefix else "mid_checkpoints"
|
|
if os.path.exists(local_checkpoints_dir):
|
|
upload_directory_to_gcs(local_checkpoints_dir, bucket_name, gcs_checkpoints_path)
|
|
else:
|
|
print(f"Warning: {local_checkpoints_dir} does not exist.")
|
|
|
|
# Upload report dir
|
|
if os.path.exists(local_report_dir):
|
|
upload_directory_to_gcs(local_report_dir, bucket_name, gcs_report_path)
|
|
|
|
if __name__ == "__main__":
|
|
main()
|