#!/usr/bin/env python3 """ CPU-compatible web chat server - serves both UI and API from a single FastAPI instance. Run with: python chat_web_cpu.py --model-dir /path/to/model Then open http://localhost:8000 in your browser. """ import argparse import json import os import glob import pickle import math import time import uuid import torch from contextlib import asynccontextmanager from fastapi import FastAPI, Request from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import StreamingResponse, HTMLResponse, FileResponse, JSONResponse from fastapi.exceptions import RequestValidationError from pydantic import BaseModel, Field from typing import List, Optional, AsyncGenerator, Literal, Union, Dict, Any from dataclasses import dataclass import torch.nn as nn import torch.nn.functional as F # ----------------------------------------------------------------------------- # Minimal GPT implementation (copied from generate_cpu.py) @dataclass class GPTConfig: sequence_len: int = 1024 vocab_size: int = 50304 n_layer: int = 12 n_head: int = 6 n_kv_head: int = 6 n_embd: int = 768 def norm(x): return F.rms_norm(x, (x.size(-1),)) def apply_rotary_emb(x, cos, sin): assert x.ndim == 4 d = x.shape[3] // 2 x1, x2 = x[..., :d], x[..., d:] y1 = x1 * cos + x2 * sin y2 = x1 * (-sin) + x2 * cos out = torch.cat([y1, y2], 3) out = out.to(x.dtype) return out def repeat_kv(x, n_rep): if n_rep == 1: return x bs, n_kv_heads, slen, head_dim = x.shape return ( x[:, :, None, :, :] .expand(bs, n_kv_heads, n_rep, slen, head_dim) .reshape(bs, n_kv_heads * n_rep, slen, head_dim) ) class CausalSelfAttention(nn.Module): def __init__(self, config, layer_idx): super().__init__() self.layer_idx = layer_idx self.n_head = config.n_head self.n_kv_head = config.n_kv_head self.n_embd = config.n_embd self.head_dim = self.n_embd // self.n_head assert self.n_embd % self.n_head == 0 assert self.n_kv_head <= self.n_head and self.n_head % self.n_kv_head == 0 self.c_q = nn.Linear(self.n_embd, self.n_head * self.head_dim, bias=False) self.c_k = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False) self.c_v = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False) self.c_proj = nn.Linear(self.n_embd, self.n_embd, bias=False) def forward(self, x, cos_sin, kv_cache): B, T, C = x.size() q = self.c_q(x).view(B, T, self.n_head, self.head_dim) k = self.c_k(x).view(B, T, self.n_kv_head, self.head_dim) v = self.c_v(x).view(B, T, self.n_kv_head, self.head_dim) cos, sin = cos_sin q, k = apply_rotary_emb(q, cos, sin), apply_rotary_emb(k, cos, sin) q, k = norm(q), norm(k) q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) if kv_cache is not None: k, v = kv_cache.insert_kv(self.layer_idx, k, v) Tq = q.size(2) Tk = k.size(2) nrep = self.n_head // self.n_kv_head k, v = repeat_kv(k, nrep), repeat_kv(v, nrep) if kv_cache is None or Tq == Tk: y = F.scaled_dot_product_attention(q, k, v, is_causal=True) elif Tq == 1: y = F.scaled_dot_product_attention(q, k, v, is_causal=False) else: attn_mask = torch.zeros((Tq, Tk), dtype=torch.bool, device=q.device) prefix_len = Tk - Tq if prefix_len > 0: attn_mask[:, :prefix_len] = True attn_mask[:, prefix_len:] = torch.tril(torch.ones((Tq, Tq), dtype=torch.bool, device=q.device)) y = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask) y = y.transpose(1, 2).contiguous().view(B, T, -1) y = self.c_proj(y) return y class MLP(nn.Module): def __init__(self, config): super().__init__() self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=False) self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=False) def forward(self, x): x = self.c_fc(x) x = F.relu(x).square() x = self.c_proj(x) return x class Block(nn.Module): def __init__(self, config, layer_idx): super().__init__() self.attn = CausalSelfAttention(config, layer_idx) self.mlp = MLP(config) def forward(self, x, cos_sin, kv_cache): x = x + self.attn(norm(x), cos_sin, kv_cache) x = x + self.mlp(norm(x)) return x class GPT(nn.Module): def __init__(self, config): super().__init__() self.config = config self.transformer = nn.ModuleDict({ "wte": nn.Embedding(config.vocab_size, config.n_embd), "h": nn.ModuleList([Block(config, layer_idx) for layer_idx in range(config.n_layer)]), }) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.rotary_seq_len = config.sequence_len * 10 head_dim = config.n_embd // config.n_head cos, sin = self._precompute_rotary_embeddings(self.rotary_seq_len, head_dim) self.register_buffer("cos", cos, persistent=False) self.register_buffer("sin", sin, persistent=False) def init_weights(self): self.apply(self._init_weights) torch.nn.init.zeros_(self.lm_head.weight) for block in self.transformer.h: torch.nn.init.zeros_(block.mlp.c_proj.weight) torch.nn.init.zeros_(block.attn.c_proj.weight) head_dim = self.config.n_embd // self.config.n_head cos, sin = self._precompute_rotary_embeddings(self.rotary_seq_len, head_dim) self.cos, self.sin = cos, sin def _init_weights(self, module): if isinstance(module, nn.Linear): fan_out = module.weight.size(0) fan_in = module.weight.size(1) std = 1.0 / math.sqrt(fan_in) * min(1.0, math.sqrt(fan_out / fan_in)) torch.nn.init.normal_(module.weight, mean=0.0, std=std) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=1.0) def _precompute_rotary_embeddings(self, seq_len, head_dim, base=10000, device=None): if device is None: device = self.transformer.wte.weight.device channel_range = torch.arange(0, head_dim, 2, dtype=torch.float32, device=device) inv_freq = 1.0 / (base ** (channel_range / head_dim)) t = torch.arange(seq_len, dtype=torch.float32, device=device) freqs = torch.outer(t, inv_freq) cos, sin = freqs.cos(), freqs.sin() cos, sin = cos[None, :, None, :], sin[None, :, None, :] return cos, sin def forward(self, idx, targets=None, kv_cache=None): B, T = idx.size() assert T <= self.cos.size(1) T0 = 0 if kv_cache is None else kv_cache.get_pos() cos_sin = self.cos[:, T0:T0+T], self.sin[:, T0:T0+T] x = self.transformer.wte(idx) x = norm(x) for block in self.transformer.h: x = block(x, cos_sin, kv_cache) x = norm(x) softcap = 15 logits = self.lm_head(x) logits = softcap * torch.tanh(logits / softcap) return logits # ----------------------------------------------------------------------------- # Simple tokenizer wrapper class SimpleTokenizer: def __init__(self, enc): self.enc = enc try: self.bos_token_id = enc.encode_single_token("<|bos|>") except: try: self.bos_token_id = enc.encode_single_token("<|endoftext|>") except: self.bos_token_id = 0 # Get special tokens try: self.user_start = enc.encode_single_token("<|user_start|>") self.user_end = enc.encode_single_token("<|user_end|>") self.assistant_start = enc.encode_single_token("<|assistant_start|>") self.assistant_end = enc.encode_single_token("<|assistant_end|>") except: # Fallback if special tokens don't exist self.user_start = 0 self.user_end = 0 self.assistant_start = 0 self.assistant_end = 0 def get_bos_token_id(self): return self.bos_token_id def encode_special(self, token): try: return self.enc.encode_single_token(token) except: return 0 def encode(self, text): return self.enc.encode_ordinary(text) def decode(self, tokens): return self.enc.decode(tokens) # ----------------------------------------------------------------------------- # Simple generator (no Engine class needed) def generate_tokens(model, input_tokens, max_tokens=512, temperature=0.8, top_k=50, device='cpu'): """Generate tokens one at a time.""" x = torch.tensor([input_tokens], dtype=torch.long, device=device) generated = [] with torch.inference_mode(): for _ in range(max_tokens): logits = model(x) logits = logits[:, -1, :] / temperature if top_k > 0: v, _ = torch.topk(logits, min(top_k, logits.size(-1))) logits[logits < v[:, [-1]]] = -float('Inf') probs = torch.nn.functional.softmax(logits, dim=-1) next_token = torch.multinomial(probs, num_samples=1) generated.append(next_token.item()) x = torch.cat([x, next_token], dim=1) yield next_token.item() # ----------------------------------------------------------------------------- # FastAPI app parser = argparse.ArgumentParser(description='NanoChat Web Server (CPU)') parser.add_argument('--model-dir', type=str, required=True, help='Path to model directory containing model_*.pt, meta_*.json, and tokenizer.pkl') parser.add_argument('-t', '--temperature', type=float, default=0.8, help='Default temperature for generation') parser.add_argument('-k', '--top-k', type=int, default=50, help='Default top-k sampling parameter') parser.add_argument('-m', '--max-tokens', type=int, default=512, help='Default max tokens for generation') parser.add_argument('-p', '--port', type=int, default=8000, help='Port to run the server on') parser.add_argument('--host', type=str, default='0.0.0.0', help='Host to bind the server to') args = parser.parse_args() device = torch.device("cpu") # OpenAI-compatible request/response models class ChatMessage(BaseModel): role: Literal["system", "user", "assistant"] content: str # Only text content supported name: Optional[str] = None class ChatCompletionRequest(BaseModel): model: str = Field(default="nanochat", description="Model to use for completion") messages: List[ChatMessage] # Supported parameters temperature: Optional[float] = Field(default=None, ge=0, le=2) max_tokens: Optional[int] = Field(default=None, ge=1) top_k: Optional[int] = Field(default=None, ge=1, description="Top-k sampling (NanoChat-specific)") stream: Optional[bool] = False # Accepted but not supported (will be rejected if provided) top_p: Optional[float] = Field(default=None, ge=0, le=1) n: Optional[int] = Field(default=None, ge=1) stop: Optional[Union[str, List[str]]] = None presence_penalty: Optional[float] = Field(default=None, ge=-2, le=2) frequency_penalty: Optional[float] = Field(default=None, ge=-2, le=2) logit_bias: Optional[Dict[str, float]] = None user: Optional[str] = None # Not supported features tools: Optional[List[Dict[str, Any]]] = None tool_choice: Optional[Union[str, Dict[str, Any]]] = None functions: Optional[List[Dict[str, Any]]] = None function_call: Optional[Union[str, Dict[str, Any]]] = None class ChatCompletionResponseChoice(BaseModel): index: int message: ChatMessage finish_reason: Optional[Literal["stop", "length", "content_filter"]] = None class ChatCompletionResponseStreamChoice(BaseModel): index: int delta: Dict[str, Any] finish_reason: Optional[Literal["stop", "length", "content_filter"]] = None class UsageInfo(BaseModel): prompt_tokens: int completion_tokens: int total_tokens: int class ChatCompletionResponse(BaseModel): id: str object: Literal["chat.completion"] = "chat.completion" created: int model: str choices: List[ChatCompletionResponseChoice] usage: UsageInfo class ChatCompletionStreamResponse(BaseModel): id: str object: Literal["chat.completion.chunk"] = "chat.completion.chunk" created: int model: str choices: List[ChatCompletionResponseStreamChoice] @asynccontextmanager async def lifespan(app: FastAPI): """Load model on startup.""" print(f"Loading model from {args.model_dir}...") # Find model and meta files model_files = glob.glob(os.path.join(args.model_dir, "model_*.pt")) if not model_files: raise FileNotFoundError(f"No model files found in {args.model_dir}") model_file = model_files[0] meta_files = glob.glob(os.path.join(args.model_dir, "meta_*.json")) if not meta_files: raise FileNotFoundError(f"No meta files found in {args.model_dir}") meta_file = meta_files[0] # Load metadata with open(meta_file, 'r') as f: meta = json.load(f) model_config_kwargs = meta["model_config"] print(f"Model config: {model_config_kwargs}") # Build the model model_config = GPTConfig(**model_config_kwargs) with torch.device("meta"): model = GPT(model_config) # Load model weights print("Loading model weights...") model_data = torch.load(model_file, map_location=device, weights_only=False) model_data = {k.lstrip("_orig_mod."): v for k, v in model_data.items()} # Convert bfloat16 to float32 for CPU print("Converting model to float32 for CPU...") model_data = {k: v.float() if v.dtype == torch.bfloat16 else v for k, v in model_data.items()} model.to_empty(device=device) model.init_weights() model.load_state_dict(model_data, strict=True, assign=True) model.eval() # Load tokenizer print("Loading tokenizer...") tokenizer_path = os.path.join(args.model_dir, "tokenizer.pkl") if not os.path.exists(tokenizer_path): raise FileNotFoundError(f"Tokenizer not found at {tokenizer_path}") with open(tokenizer_path, "rb") as f: import tiktoken enc = pickle.load(f) tokenizer = SimpleTokenizer(enc) app.state.model = model app.state.tokenizer = tokenizer print(f"✓ Model loaded successfully!") print(f"✓ Server ready at http://localhost:{args.port}") yield app = FastAPI(lifespan=lifespan) # Custom exception handler for OpenAI-compatible error responses class OpenAIError(Exception): """Custom exception that returns OpenAI-compatible error format.""" def __init__(self, message: str, error_type: str = "invalid_request_error", param: str = None, code: str = None): self.message = message self.error_type = error_type self.param = param self.code = code super().__init__(message) @app.exception_handler(OpenAIError) async def openai_error_handler(request: Request, exc: OpenAIError): """Return errors in OpenAI API format.""" return JSONResponse( status_code=400, content={ "error": { "message": exc.message, "type": exc.error_type, "param": exc.param, "code": exc.code } } ) @app.exception_handler(RequestValidationError) async def validation_exception_handler(request: Request, exc: RequestValidationError): """Handle Pydantic validation errors in OpenAI format.""" errors = exc.errors() if errors: first_error = errors[0] param = ".".join(str(x) for x in first_error.get("loc", [])) message = first_error.get("msg", "Invalid request") else: param = None message = "Invalid request" return JSONResponse( status_code=400, content={ "error": { "message": message, "type": "invalid_request_error", "param": param, "code": None } } ) app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) @app.get("/") async def root(): """Serve the chat UI.""" ui_html_path = os.path.join("nanochat", "ui.html") with open(ui_html_path, "r") as f: html_content = f.read() # Replace the API_URL to use the same origin html_content = html_content.replace( "const API_URL = `http://${window.location.hostname}:8000`;", "const API_URL = '';" ) return HTMLResponse(content=html_content) @app.get("/logo.svg") async def logo(): """Serve the NanoChat logo for favicon and header.""" logo_path = os.path.join("nanochat", "logo.svg") return FileResponse(logo_path, media_type="image/svg+xml") async def generate_stream( model, tokenizer, tokens, completion_id: str, model_name: str, created: int, temperature=None, max_new_tokens=None, top_k=None ) -> AsyncGenerator[str, None]: """Generate assistant response with OpenAI-compatible streaming. Supported parameters: temperature, max_new_tokens, top_k """ temperature = temperature if temperature is not None else args.temperature # Greedy decoding when temperature <= 0 if temperature is not None and temperature <= 0: temperature = 1e-6 max_new_tokens = max_new_tokens if max_new_tokens is not None else args.max_tokens # Enforce max 1000 cap if max_new_tokens is None: max_new_tokens = 256 max_new_tokens = max(1, min(1000, int(max_new_tokens))) top_k = top_k if top_k is not None else args.top_k if top_k is None: top_k = 50 vocab_size = getattr(app.state.model.config, 'vocab_size', 50257) top_k = max(1, min(int(top_k), int(vocab_size))) assistant_end = tokenizer.encode_special("<|assistant_end|>") bos = tokenizer.get_bos_token_id() # Send initial chunk with role chunk = ChatCompletionStreamResponse( id=completion_id, created=created, model=model_name, choices=[ChatCompletionResponseStreamChoice( index=0, delta={"role": "assistant", "content": ""}, finish_reason=None )] ) yield f"data: {chunk.model_dump_json()}\n\n" finish_reason = "length" for token in generate_tokens(model, tokens, max_new_tokens, temperature, top_k, device): if token == assistant_end or token == bos: finish_reason = "stop" break token_text = tokenizer.decode([token]) # Send content chunk chunk = ChatCompletionStreamResponse( id=completion_id, created=created, model=model_name, choices=[ChatCompletionResponseStreamChoice( index=0, delta={"content": token_text}, finish_reason=None )] ) yield f"data: {chunk.model_dump_json()}\n\n" # Send final chunk with finish_reason chunk = ChatCompletionStreamResponse( id=completion_id, created=created, model=model_name, choices=[ChatCompletionResponseStreamChoice( index=0, delta={}, finish_reason=finish_reason )] ) yield f"data: {chunk.model_dump_json()}\n\n" # OpenAI sends [DONE] at the end yield "data: [DONE]\n\n" @app.post("/chat/completions") @app.post("/v1/chat/completions") async def chat_completions(request: ChatCompletionRequest): """ OpenAI-compatible chat completion endpoint. Supported parameters: - messages: Array of message objects (text only) - temperature: Sampling temperature (0-2) - max_tokens: Maximum tokens to generate - top_k: Top-k sampling (NanoChat-specific) - stream: Enable streaming responses Not supported (rejected with clear errors): - top_p, n, stop, presence_penalty, frequency_penalty, logit_bias, user - tools, functions (function calling not supported) - Multi-modal content (only text messages supported) """ model = app.state.model tokenizer = app.state.tokenizer # Validate unsupported features if request.tools or request.tool_choice or request.functions or request.function_call: raise OpenAIError( message="Function calling and tools are not supported by this model. Only text completion is available.", error_type="invalid_request_error", code="unsupported_feature" ) # Reject any unsupported standard params if provided unsupported_fields = [] if request.n is not None: unsupported_fields.append("n") if request.top_p is not None: unsupported_fields.append("top_p") if request.stop is not None: unsupported_fields.append("stop") if request.presence_penalty is not None: unsupported_fields.append("presence_penalty") if request.frequency_penalty is not None: unsupported_fields.append("frequency_penalty") if request.logit_bias is not None: unsupported_fields.append("logit_bias") if request.user is not None: unsupported_fields.append("user") if unsupported_fields: raise OpenAIError( message=f"Unsupported parameters for this model: {', '.join(unsupported_fields)}. Supported only: messages, temperature, max_tokens, top_k, stream.", error_type="invalid_request_error", param=unsupported_fields[0], code="unsupported_parameter" ) # Validate messages are text-only for i, msg in enumerate(request.messages): if not isinstance(msg.content, str): raise OpenAIError( message=f"Message at index {i} contains non-text content. Only text messages are supported.", error_type="invalid_request_error", param=f"messages[{i}].content", code="invalid_message_content" ) # Generate unique completion ID and timestamp completion_id = f"chatcmpl-{uuid.uuid4().hex[:24]}" created = int(time.time()) model_name = request.model # Build conversation tokens bos = tokenizer.get_bos_token_id() user_start = tokenizer.encode_special("<|user_start|>") user_end = tokenizer.encode_special("<|user_end|>") assistant_start = tokenizer.encode_special("<|assistant_start|>") assistant_end = tokenizer.encode_special("<|assistant_end|>") system_start = tokenizer.encode_special("<|system_start|>") system_end = tokenizer.encode_special("<|system_end|>") conversation_tokens = [bos] for message in request.messages: if message.role == "user": conversation_tokens.append(user_start) conversation_tokens.extend(tokenizer.encode(message.content)) conversation_tokens.append(user_end) elif message.role == "assistant": conversation_tokens.append(assistant_start) conversation_tokens.extend(tokenizer.encode(message.content)) conversation_tokens.append(assistant_end) elif message.role == "system": # Handle system messages if supported if system_start != 0 and system_end != 0: conversation_tokens.append(system_start) conversation_tokens.extend(tokenizer.encode(message.content)) conversation_tokens.append(system_end) else: # Fallback: treat system message as user message conversation_tokens.append(user_start) conversation_tokens.extend(tokenizer.encode(message.content)) conversation_tokens.append(user_end) conversation_tokens.append(assistant_start) prompt_tokens = len(conversation_tokens) # Use only supported parameters: temperature, max_tokens, top_k if request.stream: return StreamingResponse( generate_stream( model, tokenizer, conversation_tokens, completion_id=completion_id, model_name=model_name, created=created, temperature=request.temperature, max_new_tokens=request.max_tokens, top_k=request.top_k ), media_type="text/event-stream" ) else: # Non-streaming response temperature = request.temperature if request.temperature is not None else args.temperature # Enforce max 1000 tokens cap max_tokens = request.max_tokens if request.max_tokens is not None else args.max_tokens if max_tokens is None: max_tokens = 256 max_tokens = max(1, min(1000, int(max_tokens))) # Validate top_k: 1..vocab_size top_k = request.top_k if request.top_k is not None else args.top_k if top_k is None: top_k = 50 vocab_size = getattr(app.state.model.config, 'vocab_size', 50257) top_k = max(1, min(int(top_k), int(vocab_size))) generated_tokens = [] finish_reason = "length" for token in generate_tokens(model, conversation_tokens, max_tokens, temperature, top_k, device): if token == assistant_end or token == bos: finish_reason = "stop" break generated_tokens.append(token) response_text = tokenizer.decode(generated_tokens) completion_tokens = len(generated_tokens) return ChatCompletionResponse( id=completion_id, created=created, model=model_name, choices=[ChatCompletionResponseChoice( index=0, message=ChatMessage(role="assistant", content=response_text), finish_reason=finish_reason )], usage=UsageInfo( prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, total_tokens=prompt_tokens + completion_tokens ) ) @app.get("/v1/models") @app.get("/models") async def list_models(): """ List available models (OpenAI-compatible endpoint). Returns model information with capabilities annotation. """ return { "object": "list", "data": [ { "id": "nanochat", "object": "model", "created": int(time.time()), "owned_by": "nanochat", "permission": [], "root": "nanochat", "parent": None } ] } @app.get("/health") async def health(): """Health check endpoint.""" return { "status": "ok", "ready": hasattr(app.state, 'model') and app.state.model is not None } if __name__ == "__main__": import uvicorn print(f"Starting NanoChat Web Server (CPU mode)") print(f"Temperature: {args.temperature}, Top-k: {args.top_k}, Max tokens: {args.max_tokens}") uvicorn.run(app, host=args.host, port=args.port)