mirror of
https://github.com/karpathy/nanochat.git
synced 2025-12-06 04:12:13 +00:00
Compare commits
11 Commits
e23096e827
...
5a17eebb7c
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
5a17eebb7c | ||
|
|
f66a780f68 | ||
|
|
4763ce612a | ||
|
|
c6f5bd67db | ||
|
|
a2fb3c83a6 | ||
|
|
e5efb4b471 | ||
|
|
b399e43168 | ||
|
|
52e85aaf80 | ||
|
|
70319851fc | ||
|
|
f88153065f | ||
|
|
a13c9ca6ae |
|
|
@ -184,6 +184,7 @@ python -m pytest tests/test_rustbpe.py -v -s
|
|||
│ ├── smoltalk.py # Conglomerate dataset of SmolTalk from HF
|
||||
│ └── spellingbee.py # Task teaching model to spell/count letters
|
||||
├── tests
|
||||
│ └── test_engine.py
|
||||
│ └── test_rustbpe.py
|
||||
└── uv.lock
|
||||
```
|
||||
|
|
|
|||
|
|
@ -17,8 +17,9 @@ import signal
|
|||
import warnings
|
||||
from contextlib import contextmanager
|
||||
from collections import deque
|
||||
from nanochat.common import compute_init
|
||||
from nanochat.common import compute_init, autodetect_device_type
|
||||
from nanochat.checkpoint_manager import load_model
|
||||
from contextlib import nullcontext
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Calculator tool helpers
|
||||
|
|
@ -328,6 +329,9 @@ if __name__ == "__main__":
|
|||
import time
|
||||
# init compute
|
||||
ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init()
|
||||
device_type = autodetect_device_type()
|
||||
autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=torch.bfloat16) if device_type == "cuda" else nullcontext()
|
||||
|
||||
# load the model and tokenizer
|
||||
model, tokenizer, meta = load_model("base", device, phase="eval")
|
||||
bos_token_id = tokenizer.get_bos_token_id()
|
||||
|
|
@ -340,10 +344,11 @@ if __name__ == "__main__":
|
|||
torch.cuda.synchronize()
|
||||
t0 = time.time()
|
||||
stream = model.generate(prompt_tokens, **kwargs)
|
||||
for token in stream:
|
||||
generated_tokens.append(token)
|
||||
chunk = tokenizer.decode([token])
|
||||
print(chunk, end="", flush=True)
|
||||
with autocast_ctx:
|
||||
for token in stream:
|
||||
generated_tokens.append(token)
|
||||
chunk = tokenizer.decode([token])
|
||||
print(chunk, end="", flush=True)
|
||||
print()
|
||||
torch.cuda.synchronize()
|
||||
t1 = time.time()
|
||||
|
|
@ -355,11 +360,12 @@ if __name__ == "__main__":
|
|||
stream = engine.generate(prompt_tokens, num_samples=1, **kwargs) # note: runs in fp32
|
||||
torch.cuda.synchronize()
|
||||
t0 = time.time()
|
||||
for token_column, token_masks in stream:
|
||||
token = token_column[0] # only print out the first row
|
||||
generated_tokens.append(token)
|
||||
chunk = tokenizer.decode([token])
|
||||
print(chunk, end="", flush=True)
|
||||
with autocast_ctx:
|
||||
for token_column, token_masks in stream:
|
||||
token = token_column[0] # only print out the first row
|
||||
generated_tokens.append(token)
|
||||
chunk = tokenizer.decode([token])
|
||||
print(chunk, end="", flush=True)
|
||||
print()
|
||||
torch.cuda.synchronize()
|
||||
t1 = time.time()
|
||||
|
|
|
|||
|
|
@ -9,9 +9,9 @@ import torch.distributed as dist
|
|||
def evaluate_bpb(model, batches, steps, token_bytes):
|
||||
"""
|
||||
Instead of the naive 'mean loss', this function returns the bits per byte (bpb),
|
||||
which is a tokenization vocab size-indepedent metric, meaning you are still comparing
|
||||
which is a tokenization vocab size-independent metric, meaning you are still comparing
|
||||
apples:apples if you change the vocab size. The way this works is that instead of just
|
||||
calculating the average loss as usual, you calculate the sum loss, and indepependently
|
||||
calculating the average loss as usual, you calculate the sum loss, and independently
|
||||
also the sum bytes (of all the target tokens), and divide. This normalizes the loss by
|
||||
the number of bytes that the target tokens represent.
|
||||
|
||||
|
|
|
|||
|
|
@ -27,6 +27,13 @@ pub struct Tokenizer {
|
|||
|
||||
// ------------------------ internal helpers ------------------------
|
||||
|
||||
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
|
||||
#[repr(i8)]
|
||||
enum Delta {
|
||||
Rem = -1,
|
||||
Ins = 1,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
struct Word {
|
||||
ids: Vec<u32>,
|
||||
|
|
@ -48,7 +55,7 @@ impl Word {
|
|||
/// -1 for removed pairs, +1 for newly created pairs.
|
||||
///
|
||||
/// NOTE: this version deliberately avoids a HashMap in the hot loop.
|
||||
fn merge_pair(&mut self, pair: Pair, new_id: u32) -> Vec<(Pair, i32)> {
|
||||
fn merge_pair(&mut self, pair: Pair, new_id: u32) -> Vec<(Pair, Delta)> {
|
||||
let (a, b) = pair;
|
||||
let n = self.ids.len();
|
||||
if n < 2 {
|
||||
|
|
@ -56,7 +63,7 @@ impl Word {
|
|||
}
|
||||
|
||||
let mut out: Vec<u32> = Vec::with_capacity(n);
|
||||
let mut deltas: Vec<(Pair, i32)> = Vec::with_capacity(6);
|
||||
let mut deltas: Vec<(Pair, Delta)> = Vec::with_capacity(6);
|
||||
|
||||
let mut i = 0;
|
||||
while i < n {
|
||||
|
|
@ -66,13 +73,13 @@ impl Word {
|
|||
|
||||
// remove old pairs
|
||||
if let Some(x) = left {
|
||||
deltas.push(((x, a), -1));
|
||||
deltas.push(((x, new_id), 1));
|
||||
deltas.push(((x, a), Delta::Rem));
|
||||
deltas.push(((x, new_id), Delta::Ins));
|
||||
}
|
||||
deltas.push(((a, b), -1));
|
||||
deltas.push(((a, b), Delta::Rem));
|
||||
if let Some(y) = right {
|
||||
deltas.push(((b, y), -1));
|
||||
deltas.push(((new_id, y), 1));
|
||||
deltas.push(((b, y), Delta::Rem));
|
||||
deltas.push(((new_id, y), Delta::Ins));
|
||||
}
|
||||
|
||||
// write merged token
|
||||
|
|
@ -112,12 +119,10 @@ impl PartialOrd for MergeJob {
|
|||
impl Ord for MergeJob {
|
||||
fn cmp(&self, other: &Self) -> Ordering {
|
||||
// Max-heap by count; tie-break to ascending pair order (deterministic)
|
||||
if self.count != other.count {
|
||||
self.count.cmp(&other.count)
|
||||
} else {
|
||||
self.count.cmp(&other.count).then_with(||
|
||||
// ascending order on the pair when counts tie
|
||||
other.pair.cmp(&self.pair)
|
||||
}
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -217,10 +222,10 @@ impl Tokenizer {
|
|||
let changes = words[word_idx].merge_pair(top.pair, new_id);
|
||||
// Update global pair counts based on this word's count
|
||||
for (pair, delta) in changes {
|
||||
let delta_total = delta * counts[word_idx];
|
||||
let delta_total = (delta as i32) * counts[word_idx];
|
||||
if delta_total != 0 {
|
||||
*pair_counts.entry(pair).or_default() += delta_total;
|
||||
if delta > 0 {
|
||||
if delta == Delta::Ins {
|
||||
local_pos_updates.entry(pair).or_default().insert(word_idx);
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
"""
|
||||
Evaluate the Chat model.
|
||||
All the generic code lives here, and all the evlauation-specific
|
||||
All the generic code lives here, and all the evaluation-specific
|
||||
code lives in nanochat directory and is imported from here.
|
||||
|
||||
Example runs:
|
||||
|
|
|
|||
|
|
@ -192,7 +192,7 @@ for step in range(num_iterations):
|
|||
})
|
||||
model.train()
|
||||
|
||||
# evlauate accuracy of the multiple choice tasks (which are quick to run)
|
||||
# evaluate accuracy of the multiple choice tasks (which are quick to run)
|
||||
if last_step or (step > 0 and step % eval_metrics_every == 0):
|
||||
model.eval()
|
||||
metrics = {}
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user