mirror of
https://github.com/karpathy/nanochat.git
synced 2025-12-06 04:12:13 +00:00
Compare commits
6 Commits
bad88f37df
...
34b71420b8
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
34b71420b8 | ||
|
|
4a87a0d19f | ||
|
|
11e68bf442 | ||
|
|
42b05eea7e | ||
|
|
f5001141ec | ||
|
|
b48d210795 |
|
|
@ -244,7 +244,7 @@ class GPT(nn.Module):
|
|||
def forward(self, idx, targets=None, kv_cache=None, loss_reduction='mean'):
|
||||
B, T = idx.size()
|
||||
|
||||
# Grab the rotary embeddings for the current sequence length (they are of shape (1, seq_len, 1, head_dim))
|
||||
# Grab the rotary embeddings for the current sequence length (they are of shape (1, seq_len, 1, head_dim/2))
|
||||
assert T <= self.cos.size(1), f"Sequence length grew beyond the rotary embeddings cache: {T} > {self.cos.size(1)}"
|
||||
assert idx.device == self.cos.device, f"Rotary embeddings and idx are on different devices: {idx.device} != {self.cos.device}"
|
||||
assert self.cos.dtype == torch.bfloat16, "Rotary embeddings must be in bfloat16"
|
||||
|
|
|
|||
|
|
@ -212,18 +212,30 @@ for step in range(num_iterations):
|
|||
break
|
||||
|
||||
# evaluate the gradient
|
||||
total_loss_sum = torch.tensor(0.0, device=device) # sum of losses
|
||||
num_tokens = torch.tensor(0, device=device) # the number of "active" tokens of supervision seen
|
||||
for micro_step in range(grad_accum_steps):
|
||||
train_inputs, train_targets = next(train_iter)
|
||||
with autocast_ctx:
|
||||
loss = model(train_inputs, train_targets)
|
||||
train_loss = loss.detach() # for logging
|
||||
loss = loss / grad_accum_steps # each .backward() is a grad sum => normalize loss here
|
||||
loss = model(train_inputs, train_targets, loss_reduction='sum')
|
||||
total_loss_sum += loss.detach() # for logging
|
||||
loss.backward() # accumulate the gradient
|
||||
num_tokens += (train_targets >= 0).sum()
|
||||
if ddp:
|
||||
dist.all_reduce(total_loss_sum, op=dist.ReduceOp.SUM)
|
||||
dist.all_reduce(num_tokens, op=dist.ReduceOp.SUM) # sum over ranks
|
||||
|
||||
# scale gradients by total number of tokens
|
||||
num_tokens_item = num_tokens.item()
|
||||
if num_tokens_item == 0:
|
||||
print0(f"Warning: the number of valid tokens in train targets is 0 at step {step}, skipping model update")
|
||||
model.zero_grad(set_to_none=True)
|
||||
continue
|
||||
|
||||
for param in model.parameters():
|
||||
if param.grad is not None:
|
||||
param.grad.div_(num_tokens_item)
|
||||
|
||||
# learning rate scheduler
|
||||
lrm = get_lr_multiplier(step)
|
||||
for opt in optimizers:
|
||||
|
|
@ -236,8 +248,7 @@ for step in range(num_iterations):
|
|||
model.zero_grad(set_to_none=True)
|
||||
|
||||
# logging
|
||||
train_loss_item = train_loss.item()
|
||||
num_tokens_item = num_tokens.item()
|
||||
train_loss_item = total_loss_sum.item() / num_tokens_item
|
||||
print0(f"Step {step:05d}/{num_iterations:05d} | Training loss: {train_loss_item:.6f}| lrm: {lrm:.6f}| num_tokens: {num_tokens_item:,}")
|
||||
wandb_run.log({
|
||||
"step": step,
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user