Compare commits

...

18 Commits

Author SHA1 Message Date
Gaurav
0653a6f393
Merge a3b701af8d into f66a780f68 2025-11-14 12:00:19 -08:00
Andrej
f66a780f68
Fix torch.dtype mismatching when running engine inline test. 2025-11-14 07:28:29 -08:00
Andrej
4763ce612a
Small fixes to typos 2025-11-14 07:25:59 -08:00
Sofie Van Landeghem
c6f5bd67db
revert change of base to sft for quick inline test 2025-11-14 12:20:03 +01:00
svlandeg
a2fb3c83a6 fix typos 2025-11-14 11:20:25 +01:00
svlandeg
e5efb4b471 add test_engine.py to file structure 2025-11-14 11:13:42 +01:00
Andrej Karpathy
9a71d13688 typo oops 2025-11-13 16:08:30 +00:00
Andrej Karpathy
7b7fd0fe71 thank you Sophie for your help with nanochat 2025-11-13 16:07:54 +00:00
Andrej Karpathy
c6abcdfe3a big change: add pretraining resumption logic so that checkpoints can now be approximately resumed and training can continue. this is useful for very long runs when you don't want the anxiety of your run crashing for some reason. alternatively, it's a way to recover training in the event of loss spikes. i mean, this should have been there in v0 but it's ok. the resumption is approximate to control complexity and bloat, but it's possible we want to change that in the future. to use, set --save_every to a step interval to write checkpoints with, and then use --resume_from_step to resume optimization from a given step. only base model training (pretraining) supports this atm, but it's ok because midtraining is comparably quite a bit faster. 2025-11-13 15:34:40 +00:00
Andrej Karpathy
91f09ccd0d minor fix comment in engine 2025-11-13 15:28:18 +00:00
Andrej Karpathy
adb5d4a16c uv lock has to change when we removed numpy the other commit 2025-11-13 15:16:27 +00:00
howardgao@outlook.com
b399e43168 fix engine test bug 2025-11-06 08:56:45 +08:00
svlandeg
52e85aaf80 Merge branch 'master' into fix/typo 2025-11-02 13:41:13 +01:00
svlandeg
70319851fc fix typo 2025-10-29 19:48:34 +01:00
Goderr
a3b701af8d change in code block display 2025-10-21 20:17:03 +05:30
Goderr
e9c5e911f6 change in linespacing of response 2025-10-21 20:14:15 +05:30
Goderr
07348bb1d3 forgot to change the max_tokens 2025-10-21 18:01:41 +05:30
Goderr
5ec267fabc Change in UI 2025-10-21 17:49:08 +05:30
11 changed files with 369 additions and 108 deletions

View File

@ -184,6 +184,7 @@ python -m pytest tests/test_rustbpe.py -v -s
│ ├── smoltalk.py # Conglomerate dataset of SmolTalk from HF
│ └── spellingbee.py # Task teaching model to spell/count letters
├── tests
│ └── test_engine.py
│ └── test_rustbpe.py
└── uv.lock
```
@ -201,6 +202,7 @@ Current LLM policy: disclosure. When submitting a PR, please declare any parts t
- Thank you to [HuggingFace](https://huggingface.co/) for fineweb and smoltalk.
- Thank you [Lambda](https://lambda.ai/service/gpu-cloud) for the compute used in developing this project.
- Thank you to chief LLM whisperer 🧙‍♂️ Alec Radford for advice/guidance.
- Thank you to the repo czar Sofie [@svlandeg](https://github.com/svlandeg) for help with managing issues, pull requests and discussions of nanochat.
## Cite

View File

@ -20,33 +20,32 @@ def log0(message):
if int(os.environ.get('RANK', 0)) == 0:
logger.info(message)
def save_checkpoint(checkpoint_dir, step, model_data, optimizer_data, meta_data):
assert int(os.environ.get('RANK', 0)) == 0 # prevent footguns for now
os.makedirs(checkpoint_dir, exist_ok=True)
# Save the model state (parameters)
model_path = os.path.join(checkpoint_dir, f"model_{step:06d}.pt")
torch.save(model_data, model_path)
log0(f"Saved model file to: {model_path}")
# Save the optimizer state (useful for SFT or any other fine-tuning)
def save_checkpoint(checkpoint_dir, step, model_data, optimizer_data, meta_data, rank=0):
if rank == 0:
os.makedirs(checkpoint_dir, exist_ok=True)
# Save the model state parameters
model_path = os.path.join(checkpoint_dir, f"model_{step:06d}.pt")
torch.save(model_data, model_path)
logger.info(f"Saved model parameters to: {model_path}")
# Save the metadata dict as json
meta_path = os.path.join(checkpoint_dir, f"meta_{step:06d}.json")
with open(meta_path, "w", encoding="utf-8") as f:
json.dump(meta_data, f, indent=2)
logger.info(f"Saved metadata to: {meta_path}")
# Note that optimizer state is sharded across ranks, so each rank must save its own.
if optimizer_data is not None:
optimizer_path = os.path.join(checkpoint_dir, f"optim_{step:06d}.pt")
optimizer_path = os.path.join(checkpoint_dir, f"optim_{step:06d}_rank{rank:d}.pt")
torch.save(optimizer_data, optimizer_path)
log0(f"Saved optimizer file to: {optimizer_path}")
# Save the metadata dict as json
meta_path = os.path.join(checkpoint_dir, f"meta_{step:06d}.json")
with open(meta_path, "w", encoding="utf-8") as f:
json.dump(meta_data, f, indent=2)
log0(f"Saved metadata file to: {meta_path}")
logger.info(f"Saved optimizer state to: {optimizer_path}")
def load_checkpoint(checkpoint_dir, step, device, load_optimizer=False):
def load_checkpoint(checkpoint_dir, step, device, load_optimizer=False, rank=0):
# Load the model state
model_path = os.path.join(checkpoint_dir, f"model_{step:06d}.pt")
model_data = torch.load(model_path, map_location=device)
# Load the optimizer state if requested
optimizer_data = None
if load_optimizer:
optimizer_path = os.path.join(checkpoint_dir, f"optim_{step:06d}.pt")
optimizer_path = os.path.join(checkpoint_dir, f"optim_{step:06d}_rank{rank:d}.pt")
optimizer_data = torch.load(optimizer_path, map_location=device)
# Load the metadata
meta_path = os.path.join(checkpoint_dir, f"meta_{step:06d}.json")

View File

@ -148,6 +148,8 @@ def compute_init(device_type="cuda"): # cuda|cpu|mps
assert torch.backends.mps.is_available(), "Your PyTorch installation is not configured for MPS but device_type is 'mps'"
# Reproducibility
# Note that we set the global seeds here, but most of the code uses explicit rng objects.
# The only place where global rng might be used is nn.Module initialization of the model weights.
torch.manual_seed(42)
if device_type == "cuda":
torch.cuda.manual_seed(42)

View File

@ -1,49 +1,87 @@
from collections import deque
import torch
import pyarrow.parquet as pq
from nanochat.common import get_dist_info
from nanochat.dataset import parquets_iter_batched
from nanochat.dataset import list_parquet_files
from nanochat.tokenizer import get_tokenizer
def tokenizing_distributed_data_loader(B, T, split, tokenizer_threads=4, tokenizer_batch_size=128, device="cuda"):
"""Stream pretraining text from parquet files, tokenize, yield training batches."""
def tokenizing_distributed_data_loader_with_state(B, T, split, tokenizer_threads=4, tokenizer_batch_size=128, device="cuda", resume_state_dict=None):
"""
Stream pretraining text from parquet files, tokenize, yield training batches.
This implementation became a bit more complex because we wish to support approximate resume training.
Instead of turning this into a Class, we opt to return the state_dict with every batch,
and then the caller can pass in a state_dict to resume training from a desired point.
Note that this resumption is atm only *approximate* for simplicity.
We won't repeat the same documents but we might skip a few.
The state_dict that is returned can be later passed into this function via `resume_state_dict` to approximately resume.
Perfect state resumption is possible but would be a lot more bloated, probably not worth it atm.
"""
assert split in ["train", "val"], "split must be 'train' or 'val'"
# infinite iterator over document batches (list of text strings)
ddp, ddp_rank, ddp_local_rank, ddp_world_size = get_dist_info()
def document_batches():
parquet_paths = list_parquet_files()
parquet_paths = parquet_paths[:-1] if split == "train" else parquet_paths[-1:]
resume_pq_idx = resume_state_dict["pq_idx"] if resume_state_dict is not None else 0
resume_rg_idx = resume_state_dict["rg_idx"] if resume_state_dict is not None else None
pq_idx = resume_pq_idx # we kick off parquet files at the resume index (or by default just 0)
while True: # iterate infinitely (multi-epoch)
while pq_idx < len(parquet_paths): # iterate over all parquet files
filepath = parquet_paths[pq_idx]
pf = pq.ParquetFile(filepath)
# Start from resume point if resuming on same file, otherwise from DDP rank
# I know this state resumption is a little bit tricky and a little bit hacky... sigh.
if resume_rg_idx is not None:
base_idx = resume_rg_idx // ddp_world_size # in units of ddp_world_size
base_idx += 1 # advance by 1 so that we definitely don't repeat data after resuming
rg_idx = base_idx * ddp_world_size + ddp_rank
resume_rg_idx = None # set to None as we only want to do this a single time
else:
rg_idx = ddp_rank
while rg_idx < pf.num_row_groups:
rg = pf.read_row_group(rg_idx)
batch = rg.column('text').to_pylist() # each batch is a parquet group, e.g. 1024 rows
# the tokenizer encode might want to go in even smaller batches, e.g. 128 rows
for i in range(0, len(batch), tokenizer_batch_size):
yield batch[i:i+tokenizer_batch_size], (pq_idx, rg_idx)
rg_idx += ddp_world_size # advance to the next row group (in DDP)
pq_idx += 1 # advance to the next parquet file
batches = document_batches()
# Now emit batches of tokens.
needed_tokens = B * T + 1 # +1 is because we also need the target at the last token
# get the tokenizer and the bos token
tokenizer = get_tokenizer()
bos_token = tokenizer.get_bos_token_id()
# scratch buffer holds the tokens for one iteration
token_buffer = deque() # we stream tokens on the right and pop from the left
# infinite iterator over document batches
def document_batches():
while True:
# batch will iterate in group size of the parquet files, usually e.g. 1024 rows
for batch in parquets_iter_batched(split=split, start=ddp_rank, step=ddp_world_size):
# for the tokenizer we might want to go in usually smaller batches, e.g. 128 rows
for i in range(0, len(batch), tokenizer_batch_size):
yield batch[i:i+tokenizer_batch_size]
batches = document_batches()
batch_index = 0
while True:
# Accumulate enough tokens for one iteration before yielding.
while len(token_buffer) < needed_tokens:
doc_batch = next(batches)
doc_batch, (pq_idx, rg_idx) = next(batches)
token_lists = tokenizer.encode(doc_batch, prepend=bos_token, num_threads=tokenizer_threads)
for tokens in token_lists:
token_buffer.extend(tokens)
batch_index += 1
# Move tokens from the deque into the scratch buffer
tokens = [token_buffer.popleft() for _ in range(needed_tokens)]
# CUDA supports memory pinning for faster transfers between CPU and GPU:
scratch = torch.tensor(tokens, dtype=torch.int64, pin_memory=(device == "cuda"))
# CUDA supports memory pinning for asynchronous transfers between CPU and GPU
use_cuda_optimizations = device == "cuda"
scratch = torch.tensor(tokens, dtype=torch.long, pin_memory=use_cuda_optimizations) # in PyTorch, long=int64
# Create the inputs/targets as 1D tensors
inputs_cpu = scratch[:-1].to(dtype=torch.int32)
inputs_cpu = scratch[:-1]
targets_cpu = scratch[1:]
# Reshape to 2D and move to GPU async
inputs = inputs_cpu.view(B, T).to(device=device, dtype=torch.int32, non_blocking=True)
targets = targets_cpu.view(B, T).to(device=device, dtype=torch.int64, non_blocking=True)
inputs = inputs_cpu.view(B, T).to(device=device, non_blocking=use_cuda_optimizations)
targets = targets_cpu.view(B, T).to(device=device, non_blocking=use_cuda_optimizations)
state_dict = {"pq_idx": pq_idx, "rg_idx": rg_idx} # we need this in case we wish to approximately resume training
yield inputs, targets, state_dict
def tokenizing_distributed_data_loader(*args, **kwargs):
# helper function that only emits the inputs/targets and not the state_dict
for inputs, targets, state_dict in tokenizing_distributed_data_loader_with_state(*args, **kwargs):
yield inputs, targets

View File

@ -17,8 +17,9 @@ import signal
import warnings
from contextlib import contextmanager
from collections import deque
from nanochat.common import compute_init
from nanochat.common import compute_init, autodetect_device_type
from nanochat.checkpoint_manager import load_model
from contextlib import nullcontext
# -----------------------------------------------------------------------------
# Calculator tool helpers
@ -107,8 +108,9 @@ class KVCache:
assert self.kv_cache is None, "Cannot prefill a non-empty KV cache"
assert other.kv_cache is not None, "Cannot prefill with a None KV cache"
for ix, (dim1, dim2) in enumerate(zip(self.kv_shape, other.kv_shape)):
# ix 0: num_layers, 1: k/v, 2: batch_size, 3: num_heads, 4: seq_len, 5: head_dim
if ix in [0, 1, 3, 5]:
# num_layers, batch_size, num_heads, head_dim must match
# num_layers, k/v, num_heads, head_dim must match
assert dim1 == dim2, f"Dim {ix} mismatch: {dim1} != {dim2}"
elif ix == 2:
# batch_size can be expanded
@ -327,6 +329,9 @@ if __name__ == "__main__":
import time
# init compute
ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init()
device_type = autodetect_device_type()
autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=torch.bfloat16) if device_type == "cuda" else nullcontext()
# load the model and tokenizer
model, tokenizer, meta = load_model("base", device, phase="eval")
bos_token_id = tokenizer.get_bos_token_id()
@ -339,10 +344,11 @@ if __name__ == "__main__":
torch.cuda.synchronize()
t0 = time.time()
stream = model.generate(prompt_tokens, **kwargs)
for token in stream:
generated_tokens.append(token)
chunk = tokenizer.decode([token])
print(chunk, end="", flush=True)
with autocast_ctx:
for token in stream:
generated_tokens.append(token)
chunk = tokenizer.decode([token])
print(chunk, end="", flush=True)
print()
torch.cuda.synchronize()
t1 = time.time()
@ -354,11 +360,12 @@ if __name__ == "__main__":
stream = engine.generate(prompt_tokens, num_samples=1, **kwargs) # note: runs in fp32
torch.cuda.synchronize()
t0 = time.time()
for token_column, token_masks in stream:
token = token_column[0] # only print out the first row
generated_tokens.append(token)
chunk = tokenizer.decode([token])
print(chunk, end="", flush=True)
with autocast_ctx:
for token_column, token_masks in stream:
token = token_column[0] # only print out the first row
generated_tokens.append(token)
chunk = tokenizer.decode([token])
print(chunk, end="", flush=True)
print()
torch.cuda.synchronize()
t1 = time.time()

View File

@ -9,9 +9,9 @@ import torch.distributed as dist
def evaluate_bpb(model, batches, steps, token_bytes):
"""
Instead of the naive 'mean loss', this function returns the bits per byte (bpb),
which is a tokenization vocab size-indepedent metric, meaning you are still comparing
which is a tokenization vocab size-independent metric, meaning you are still comparing
apples:apples if you change the vocab size. The way this works is that instead of just
calculating the average loss as usual, you calculate the sum loss, and indepependently
calculating the average loss as usual, you calculate the sum loss, and independently
also the sum bytes (of all the target tokens), and divide. This normalizes the loss by
the number of bytes that the target tokens represent.

View File

@ -1,10 +1,13 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0, viewport-fit=cover">
<title>NanoChat</title>
<link rel="icon" type="image/svg+xml" href="/logo.svg">
<script src="https://cdn.jsdelivr.net/npm/marked@9.1.6/marked.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/dompurify@3.0.5/dist/purify.min.js"></script>
<style>
:root {
color-scheme: light;
@ -99,11 +102,14 @@
}
.message-content {
white-space: pre-wrap;
line-height: 1.6;
max-width: 100%;
}
.message.user .message-content {
white-space: pre-wrap;
}
.message.assistant .message-content {
background: transparent;
border: none;
@ -220,8 +226,16 @@
}
@keyframes typing {
0%, 60%, 100% { opacity: 0.2; }
30% { opacity: 1; }
0%,
60%,
100% {
opacity: 0.2;
}
30% {
opacity: 1;
}
}
.error-message {
@ -232,13 +246,109 @@
border-radius: 0.75rem;
margin-top: 0.5rem;
}
/* Markdown styling */
.message-content table {
border-collapse: collapse;
margin: 0.25rem 0;
width: 100%;
}
.message-content th,
.message-content td {
border: 1px solid #e5e7eb;
padding: 0.5rem;
text-align: left;
}
.message-content th {
background-color: #f9fafb;
font-weight: 600;
}
.message-content code {
background-color: #f3f4f6;
padding: 0.125rem 0.25rem;
border-radius: 0.25rem;
font-family: 'Monaco', 'Menlo', 'Ubuntu Mono', 'Consolas', 'Courier New', monospace;
font-size: 0.875em;
}
.message-content pre {
background-color: #f3f4f6;
padding: 0.75rem;
border-radius: 0.5rem;
overflow-x: auto;
margin: 0.25rem 0;
position: relative;
}
.message-content pre code {
background: none;
padding: 0;
}
.code-language-label {
position: absolute;
top: 0.5rem;
right: 0.5rem;
background-color: #e5e7eb;
color: #6b7280;
padding: 0.125rem 0.375rem;
border-radius: 0.25rem;
font-size: 0.75rem;
font-family: ui-sans-serif, -apple-system, system-ui, "Segoe UI", Helvetica, Arial, sans-serif;
text-transform: lowercase;
font-weight: 500;
}
.message-content h1,
.message-content h2,
.message-content h3,
.message-content h4,
.message-content h5,
.message-content h6 {
margin: 0.75rem 0 0.25rem 0;
font-weight: 600;
}
.message-content h1 {
font-size: 1.5em;
}
.message-content h2 {
font-size: 1.3em;
}
.message-content h3 {
font-size: 1.1em;
}
.message-content ul,
.message-content ol {
margin: 0.25rem 0;
padding-left: 1.5rem;
}
.message-content li {
margin: 0.1rem 0;
}
.message-content blockquote {
border-left: 4px solid #e5e7eb;
padding-left: 1rem;
margin: 0.5rem 0;
color: #6b7280;
}
</style>
</head>
<body>
<div class="header">
<div class="header-left">
<button class="new-conversation-btn" onclick="newConversation()" title="New Conversation (Ctrl+Shift+N)">
<svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
<svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2"
stroke-linecap="round" stroke-linejoin="round">
<path d="M12 5v14"></path>
<path d="M5 12h14"></path>
</svg>
@ -255,15 +365,11 @@
<div class="input-container">
<div class="input-wrapper">
<textarea
id="chatInput"
class="chat-input"
placeholder="Ask anything"
rows="1"
onkeydown="handleKeyDown(event)"
></textarea>
<textarea id="chatInput" class="chat-input" placeholder="Ask anything" rows="1"
onkeydown="handleKeyDown(event)"></textarea>
<button id="sendButton" class="send-button" onclick="sendMessage()" disabled>
<svg width="22" height="22" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
<svg width="22" height="22" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2"
stroke-linecap="round" stroke-linejoin="round">
<path d="M22 2L11 13"></path>
<path d="M22 2l-7 20-4-9-9-4 20-7z"></path>
</svg>
@ -283,7 +389,65 @@
let currentTemperature = 0.8;
let currentTopK = 50;
chatInput.addEventListener('input', function() {
// Configure marked.js for better rendering
if (typeof marked !== 'undefined') {
marked.setOptions({
breaks: true, // Convert line breaks to <br>
gfm: true, // GitHub Flavored Markdown
sanitize: false, // We'll use DOMPurify instead
smartypants: false // Disable smart quotes for simplicity
});
}
// Markdown rendering function
function renderMarkdown(content) {
try {
if (typeof marked !== 'undefined' && typeof DOMPurify !== 'undefined') {
const rawHtml = marked.parse(content);
const sanitizedHtml = DOMPurify.sanitize(rawHtml);
return addLanguageLabels(sanitizedHtml);
} else {
console.warn('Markdown libraries not loaded, falling back to plain text');
return escapeHtml(content);
}
} catch (error) {
console.error('Markdown rendering failed:', error);
return escapeHtml(content);
}
}
// Add language labels to code blocks
function addLanguageLabels(html) {
const tempDiv = document.createElement('div');
tempDiv.innerHTML = html;
const codeBlocks = tempDiv.querySelectorAll('pre code');
codeBlocks.forEach(codeBlock => {
const pre = codeBlock.parentElement;
const className = codeBlock.className;
// Extract language from class (e.g., "language-javascript" -> "javascript")
const languageMatch = className.match(/language-(\w+)/);
if (languageMatch) {
const language = languageMatch[1];
const label = document.createElement('span');
label.className = 'code-language-label';
label.textContent = language;
pre.appendChild(label);
}
});
return tempDiv.innerHTML;
}
// HTML escape fallback function
function escapeHtml(text) {
const div = document.createElement('div');
div.textContent = text;
return div.innerHTML;
}
chatInput.addEventListener('input', function () {
this.style.height = 'auto';
this.style.height = Math.min(this.scrollHeight, 200) + 'px';
sendButton.disabled = !this.value.trim() || isGenerating;
@ -296,7 +460,7 @@
}
}
document.addEventListener('keydown', function(event) {
document.addEventListener('keydown', function (event) {
// Ctrl+Shift+N for new conversation
if (event.ctrlKey && event.shiftKey && event.key === 'N') {
event.preventDefault();
@ -322,13 +486,19 @@
const contentDiv = document.createElement('div');
contentDiv.className = 'message-content';
contentDiv.textContent = content;
// Render markdown for assistant messages, plain text for others
if (role === 'assistant' && content) {
contentDiv.innerHTML = renderMarkdown(content);
} else {
contentDiv.textContent = content;
}
// Add click handler for user messages to enable editing
if (role === 'user' && messageIndex !== null) {
contentDiv.setAttribute('data-message-index', messageIndex);
contentDiv.setAttribute('title', 'Click to edit and restart from here');
contentDiv.addEventListener('click', function() {
contentDiv.addEventListener('click', function () {
if (!isGenerating) {
editMessage(messageIndex);
}
@ -339,7 +509,7 @@
if (role === 'assistant' && messageIndex !== null) {
contentDiv.setAttribute('data-message-index', messageIndex);
contentDiv.setAttribute('title', 'Click to regenerate this response');
contentDiv.addEventListener('click', function() {
contentDiv.addEventListener('click', function () {
if (!isGenerating) {
regenerateMessage(messageIndex);
}
@ -422,7 +592,8 @@
const data = JSON.parse(line.slice(6));
if (data.token) {
fullResponse += data.token;
assistantContent.textContent = fullResponse;
// Render markdown in real-time as tokens arrive
assistantContent.innerHTML = renderMarkdown(fullResponse);
chatContainer.scrollTop = chatContainer.scrollHeight;
}
} catch (e) {
@ -437,7 +608,7 @@
// Add click handler to regenerate this assistant message
assistantContent.setAttribute('data-message-index', assistantMessageIndex);
assistantContent.setAttribute('title', 'Click to regenerate this response');
assistantContent.addEventListener('click', function() {
assistantContent.addEventListener('click', function () {
if (!isGenerating) {
regenerateMessage(assistantMessageIndex);
}
@ -559,4 +730,5 @@
});
</script>
</body>
</html>
</html>

View File

@ -20,10 +20,10 @@ import wandb
import torch
from nanochat.gpt import GPT, GPTConfig
from nanochat.dataloader import tokenizing_distributed_data_loader
from nanochat.dataloader import tokenizing_distributed_data_loader, tokenizing_distributed_data_loader_with_state
from nanochat.common import compute_init, compute_cleanup, print0, DummyWandb, print_banner, get_base_dir, autodetect_device_type
from nanochat.tokenizer import get_tokenizer, get_token_bytes
from nanochat.checkpoint_manager import save_checkpoint
from nanochat.checkpoint_manager import save_checkpoint, load_checkpoint
from nanochat.loss_eval import evaluate_bpb
from nanochat.engine import Engine
from scripts.base_eval import evaluate_model
@ -52,12 +52,14 @@ grad_clip = 1.0 # gradient clipping value (0.0 = disabled)
warmup_ratio = 0.0 # ratio of iterations for LR warmup
warmdown_ratio = 0.2 # ratio of iterations for LR warmdown
final_lr_frac = 0.0 # final LR is this fraction of the initial LR
resume_from_step = -1 # resume training from this step of the optimization (-1 = disable)
# Evaluation
eval_every = 250 # every how many steps to evaluate the model for val bpb
eval_tokens = 20*524288 # number of tokens to evaluate val loss on
core_metric_every = 2000 # every how many steps to evaluate the core metric (-1 = disable)
core_metric_max_per_task = 500 # examples per task in estimating the core metric
sample_every = 2000 # every how many steps to sample from the model
save_every = -1 # every how many steps to save model checkpoints (-1 = disable, and save only at the end of the run)
# Output
model_tag = "" # optionally override the model tag for the output checkpoint directory name
# now allow CLI to override the settings via the configurator lol
@ -103,16 +105,31 @@ grad_accum_steps = total_batch_size // world_tokens_per_fwdbwd
print0(f"Tokens / micro-batch / rank: {device_batch_size} x {max_seq_len} = {tokens_per_fwdbwd:,}")
print0(f"Tokens / micro-batch: {world_tokens_per_fwdbwd:,}")
print0(f"Total batch size {total_batch_size:,} => gradient accumulation steps: {grad_accum_steps}")
# -----------------------------------------------------------------------------
# Initialize the Model
# Create a new model with random weights
model_config_kwargs = dict(sequence_len=max_seq_len, vocab_size=vocab_size, n_layer=num_layers, n_head=num_heads, n_kv_head=num_kv_heads, n_embd=model_dim)
with torch.device("meta"):
model_config = GPTConfig(**model_config_kwargs)
model = GPT(model_config)
model.to_empty(device=device)
model.init_weights()
orig_model = model # original, uncompiled model, for saving raw model state_dict
model = torch.compile(model, dynamic=False) # TODO: dynamic True/False think through
# If we are resuming, overwrite the model parameters with those of the checkpoint
base_dir = get_base_dir()
output_dirname = model_tag if model_tag else f"d{depth}" # e.g. d12
checkpoint_dir = os.path.join(base_dir, "base_checkpoints", output_dirname)
resuming = resume_from_step != -1
if resuming:
print0(f"Resuming optimization from step {resume_from_step}")
model_data, optimizer_data, meta_data = load_checkpoint(checkpoint_dir, resume_from_step, device, load_optimizer=True, rank=ddp_rank)
model.load_state_dict(model_data, strict=True, assign=True)
del model_data # free up this memory after the copy
orig_model = model # original, uncompiled model, for saving raw model state_dict and for inference/evaluation (because the shapes may change shape)
model = torch.compile(model, dynamic=False) # the inputs to model will never change shape so dynamic=False is safe
num_params = sum(p.numel() for p in model.parameters())
print0(f"Number of parameters: {num_params:,}")
num_flops_per_token = model.estimate_flops()
@ -143,12 +160,18 @@ print0(f"Total training FLOPs estimate: {num_flops_per_token * total_tokens:e}")
optimizers = model.setup_optimizers(unembedding_lr=unembedding_lr, embedding_lr=embedding_lr, matrix_lr=matrix_lr, weight_decay=weight_decay)
adamw_optimizer, muon_optimizer = optimizers
if resuming:
for opt, dat in zip(optimizers, optimizer_data):
opt.load_state_dict(dat)
del optimizer_data # free up the memory
# -----------------------------------------------------------------------------
# Initialize the DataLoaders for train/val
base_dir = get_base_dir()
tokens_dir = os.path.join(base_dir, "tokenized_data")
train_loader = tokenizing_distributed_data_loader(device_batch_size, max_seq_len, split="train", device=device)
dataloader_resume_state_dict = None if not resuming else meta_data["dataloader_state_dict"]
train_loader = tokenizing_distributed_data_loader_with_state(device_batch_size, max_seq_len, split="train", device=device, resume_state_dict=dataloader_resume_state_dict)
build_val_loader = lambda: tokenizing_distributed_data_loader(device_batch_size, max_seq_len, split="val", device=device)
x, y = next(train_loader) # kick off load of the very first batch of data
x, y, dataloader_state_dict = next(train_loader) # kick off load of the very first batch of data
# -----------------------------------------------------------------------------
# Set up hyperparameter schedulers
@ -171,15 +194,25 @@ def get_muon_momentum(it):
momentum = (1 - frac) * 0.85 + frac * 0.95
return momentum
# -----------------------------------------------------------------------------
# Loop state (variables updated by the training loop)
if not resuming:
step = 0
min_val_bpb = float("inf")
smooth_train_loss = 0 # EMA of training loss
total_training_time = 0 # total wall-clock time of training
else:
step = meta_data["step"]
loop_state = meta_data["loop_state"]
min_val_bpb = loop_state["min_val_bpb"]
smooth_train_loss = loop_state["smooth_train_loss"]
total_training_time = loop_state["total_training_time"]
# -----------------------------------------------------------------------------
# Training loop
min_val_bpb = float("inf")
smooth_train_loss = 0 # EMA of training loss
ema_beta = 0.9 # EMA decay factor
total_training_time = 0 # total wall-clock time of training
# note that we run +1 steps only so that we can eval and save at the end
for step in range(num_iterations + 1):
last_step = step == num_iterations
while True:
last_step = step == num_iterations # loop runs num_iterations+1 times so that we can eval/save at the end
flops_so_far = num_flops_per_token * total_batch_size * step
# once in a while: evaluate the val bpb (all ranks participate)
@ -237,25 +270,31 @@ for step in range(num_iterations + 1):
print0(tokenizer.decode(sample[0]))
model.train()
# save checkpoint at the end of the run (only on master process)
if master_process and last_step:
output_dirname = model_tag if model_tag else f"d{depth}" # e.g. d12
checkpoint_dir = os.path.join(base_dir, "base_checkpoints", output_dirname)
# save checkpoint: at the end of the run, or every save_every steps, except at the first step or the resume step
if last_step or (step > 0 and step != resume_from_step and save_every > 0 and step % save_every == 0):
save_checkpoint(
checkpoint_dir,
step,
orig_model.state_dict(),
[opt.state_dict() for opt in optimizers], # TODO: make sure saving across ranks is done correctly
{
orig_model.state_dict(), # model parameters
[opt.state_dict() for opt in optimizers], # optimizer states
{ # metadata saved as json
"step": step,
"val_bpb": val_bpb, # loss at last step
"model_config": model_config_kwargs,
"user_config": user_config, # inputs to the training script
"device_batch_size": device_batch_size,
"max_seq_len": max_seq_len,
}
"dataloader_state_dict": dataloader_state_dict,
"loop_state": { # all loop state (other than step) so that we can resume training
"min_val_bpb": min_val_bpb,
"smooth_train_loss": smooth_train_loss,
"total_training_time": total_training_time,
},
},
rank=ddp_rank,
)
# termination conditions (TODO: possibly also add loss explosions etc.)
if last_step:
break
@ -270,7 +309,7 @@ for step in range(num_iterations + 1):
train_loss = loss.detach() # for logging
loss = loss / grad_accum_steps # each .backward() is a grad sum => normalize loss here
loss.backward()
x, y = next(train_loader) # prefetch the next batch while the GPU is busy with forward/backward
x, y, dataloader_state_dict = next(train_loader) # prefetch the next batch while the GPU is busy with forward/backward
# gradient clipping
grad_clip_enabled = grad_clip > 0.0
if grad_clip_enabled:
@ -293,6 +332,7 @@ for step in range(num_iterations + 1):
# -------------------------------------------------------------------------
# logging
ema_beta = 0.9 # EMA decay factor for some smoothing just for nicer logging
smooth_train_loss = ema_beta * smooth_train_loss + (1 - ema_beta) * train_loss.item() # EMA the training loss
debiased_smooth_loss = smooth_train_loss / (1 - ema_beta**(step + 1)) # debias the EMA
pct_done = 100 * step / num_iterations
@ -319,6 +359,9 @@ for step in range(num_iterations + 1):
log_data["train/grad_norm"] = grad_norm
wandb_run.log(log_data)
# state update
step += 1
# print a few more stats
print0(f"Peak memory usage: {get_max_memory() / 1024 / 1024:.2f}MiB")
print0(f"Total training time: {total_training_time/60:.2f}m")

View File

@ -1,6 +1,6 @@
"""
Evaluate the Chat model.
All the generic code lives here, and all the evlauation-specific
All the generic code lives here, and all the evaluation-specific
code lives in nanochat directory and is imported from here.
Example runs:

View File

@ -192,7 +192,7 @@ for step in range(num_iterations):
})
model.train()
# evlauate accuracy of the multiple choice tasks (which are quick to run)
# evaluate accuracy of the multiple choice tasks (which are quick to run)
if last_step or (step > 0 and step % eval_metrics_every == 0):
model.eval()
metrics = {}

18
uv.lock
View File

@ -311,7 +311,7 @@ name = "exceptiongroup"
version = "1.3.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "typing-extensions", marker = "python_full_version < '3.12' or (extra == 'extra-8-nanochat-cpu' and extra == 'extra-8-nanochat-gpu')" },
{ name = "typing-extensions", marker = "python_full_version < '3.11' or (extra == 'extra-8-nanochat-cpu' and extra == 'extra-8-nanochat-gpu')" },
]
sdist = { url = "https://files.pythonhosted.org/packages/0b/9f/a65090624ecf468cdca03533906e7c69ed7588582240cfe7cc9e770b50eb/exceptiongroup-1.3.0.tar.gz", hash = "sha256:b241f5885f560bc56a59ee63ca4c6a8bfa46ae4ad651af316d4e81817bb9fd88", size = 29749, upload-time = "2025-05-10T17:42:51.123Z" }
wheels = [
@ -777,7 +777,6 @@ dependencies = [
{ name = "datasets" },
{ name = "fastapi" },
{ name = "files-to-prompt" },
{ name = "numpy" },
{ name = "psutil" },
{ name = "regex" },
{ name = "setuptools" },
@ -811,7 +810,6 @@ requires-dist = [
{ name = "datasets", specifier = ">=4.0.0" },
{ name = "fastapi", specifier = ">=0.117.1" },
{ name = "files-to-prompt", specifier = ">=0.6" },
{ name = "numpy", specifier = "==1.26.4" },
{ name = "psutil", specifier = ">=7.1.0" },
{ name = "regex", specifier = ">=2025.9.1" },
{ name = "setuptools", specifier = ">=80.9.0" },
@ -951,7 +949,7 @@ name = "nvidia-cudnn-cu12"
version = "9.10.2.21"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "nvidia-cublas-cu12", marker = "extra == 'extra-8-nanochat-gpu'" },
{ name = "nvidia-cublas-cu12", marker = "(sys_platform == 'linux' and extra == 'extra-8-nanochat-gpu') or (extra == 'extra-8-nanochat-cpu' and extra == 'extra-8-nanochat-gpu')" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/fa/41/e79269ce215c857c935fd86bcfe91a451a584dfc27f1e068f568b9ad1ab7/nvidia_cudnn_cu12-9.10.2.21-py3-none-manylinux_2_27_aarch64.whl", hash = "sha256:c9132cc3f8958447b4910a1720036d9eff5928cc3179b0a51fb6d167c6cc87d8", size = 705026878, upload-time = "2025-06-06T21:52:51.348Z" },
@ -964,7 +962,7 @@ name = "nvidia-cufft-cu12"
version = "11.3.3.83"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "nvidia-nvjitlink-cu12", marker = "extra == 'extra-8-nanochat-gpu'" },
{ name = "nvidia-nvjitlink-cu12", marker = "(sys_platform == 'linux' and extra == 'extra-8-nanochat-gpu') or (extra == 'extra-8-nanochat-cpu' and extra == 'extra-8-nanochat-gpu')" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/60/bc/7771846d3a0272026c416fbb7e5f4c1f146d6d80704534d0b187dd6f4800/nvidia_cufft_cu12-11.3.3.83-py3-none-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:848ef7224d6305cdb2a4df928759dca7b1201874787083b6e7550dd6765ce69a", size = 193109211, upload-time = "2025-03-07T01:44:56.873Z" },
@ -996,9 +994,9 @@ name = "nvidia-cusolver-cu12"
version = "11.7.3.90"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "nvidia-cublas-cu12", marker = "extra == 'extra-8-nanochat-gpu'" },
{ name = "nvidia-cusparse-cu12", marker = "extra == 'extra-8-nanochat-gpu'" },
{ name = "nvidia-nvjitlink-cu12", marker = "extra == 'extra-8-nanochat-gpu'" },
{ name = "nvidia-cublas-cu12", marker = "(sys_platform == 'linux' and extra == 'extra-8-nanochat-gpu') or (extra == 'extra-8-nanochat-cpu' and extra == 'extra-8-nanochat-gpu')" },
{ name = "nvidia-cusparse-cu12", marker = "(sys_platform == 'linux' and extra == 'extra-8-nanochat-gpu') or (extra == 'extra-8-nanochat-cpu' and extra == 'extra-8-nanochat-gpu')" },
{ name = "nvidia-nvjitlink-cu12", marker = "(sys_platform == 'linux' and extra == 'extra-8-nanochat-gpu') or (extra == 'extra-8-nanochat-cpu' and extra == 'extra-8-nanochat-gpu')" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/c8/32/f7cd6ce8a7690544d084ea21c26e910a97e077c9b7f07bf5de623ee19981/nvidia_cusolver_cu12-11.7.3.90-py3-none-manylinux_2_27_aarch64.whl", hash = "sha256:db9ed69dbef9715071232caa9b69c52ac7de3a95773c2db65bdba85916e4e5c0", size = 267229841, upload-time = "2025-03-07T01:46:54.356Z" },
@ -1011,7 +1009,7 @@ name = "nvidia-cusparse-cu12"
version = "12.5.8.93"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "nvidia-nvjitlink-cu12", marker = "extra == 'extra-8-nanochat-gpu'" },
{ name = "nvidia-nvjitlink-cu12", marker = "(sys_platform == 'linux' and extra == 'extra-8-nanochat-gpu') or (extra == 'extra-8-nanochat-cpu' and extra == 'extra-8-nanochat-gpu')" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/bc/f7/cd777c4109681367721b00a106f491e0d0d15cfa1fd59672ce580ce42a97/nvidia_cusparse_cu12-12.5.8.93-py3-none-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:9b6c161cb130be1a07a27ea6923df8141f3c295852f4b260c65f18f3e0a091dc", size = 288117129, upload-time = "2025-03-07T01:47:40.407Z" },
@ -1955,7 +1953,7 @@ name = "triton"
version = "3.4.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "setuptools", marker = "extra == 'extra-8-nanochat-gpu'" },
{ name = "setuptools", marker = "(sys_platform == 'linux' and extra == 'extra-8-nanochat-gpu') or (extra == 'extra-8-nanochat-cpu' and extra == 'extra-8-nanochat-gpu')" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/62/ee/0ee5f64a87eeda19bbad9bc54ae5ca5b98186ed00055281fd40fb4beb10e/triton-3.4.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:7ff2785de9bc02f500e085420273bb5cc9c9bb767584a4aa28d6e360cec70128", size = 155430069, upload-time = "2025-07-30T19:58:21.715Z" },