mirror of
https://github.com/karpathy/nanochat.git
synced 2025-12-06 04:12:13 +00:00
Compare commits
10 Commits
5e064dfcd5
...
77658f75f2
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
77658f75f2 | ||
|
|
f66a780f68 | ||
|
|
4763ce612a | ||
|
|
c6f5bd67db | ||
|
|
a2fb3c83a6 | ||
|
|
e5efb4b471 | ||
|
|
b399e43168 | ||
|
|
52e85aaf80 | ||
|
|
70319851fc | ||
|
|
f5d35391db |
|
|
@ -184,6 +184,7 @@ python -m pytest tests/test_rustbpe.py -v -s
|
|||
│ ├── smoltalk.py # Conglomerate dataset of SmolTalk from HF
|
||||
│ └── spellingbee.py # Task teaching model to spell/count letters
|
||||
├── tests
|
||||
│ └── test_engine.py
|
||||
│ └── test_rustbpe.py
|
||||
└── uv.lock
|
||||
```
|
||||
|
|
|
|||
|
|
@ -11,6 +11,7 @@ import os
|
|||
import argparse
|
||||
import time
|
||||
import requests
|
||||
import pyarrow.fs as fs
|
||||
import pyarrow.parquet as pq
|
||||
from multiprocessing import Pool
|
||||
|
||||
|
|
@ -20,7 +21,7 @@ from nanochat.common import get_base_dir
|
|||
# The specifics of the current pretraining dataset
|
||||
|
||||
# The URL on the internet where the data is hosted and downloaded from on demand
|
||||
BASE_URL = "https://huggingface.co/datasets/karpathy/fineweb-edu-100b-shuffle/resolve/main"
|
||||
BASE_URI = "hf://datasets/karpathy/fineweb-edu-100b-shuffle"
|
||||
MAX_SHARD = 1822 # the last datashard is shard_01822.parquet
|
||||
index_to_filename = lambda index: f"shard_{index:05d}.parquet" # format of the filenames
|
||||
base_dir = get_base_dir()
|
||||
|
|
@ -68,45 +69,17 @@ def download_single_file(index):
|
|||
return True
|
||||
|
||||
# Construct the remote URL for this file
|
||||
url = f"{BASE_URL}/{filename}"
|
||||
uri = f"{BASE_URI}/{filename}"
|
||||
print(f"Downloading {filename}...")
|
||||
|
||||
# Download with retries
|
||||
max_attempts = 5
|
||||
for attempt in range(1, max_attempts + 1):
|
||||
try:
|
||||
response = requests.get(url, stream=True, timeout=30)
|
||||
response.raise_for_status()
|
||||
# Write to temporary file first
|
||||
temp_path = filepath + f".tmp"
|
||||
with open(temp_path, 'wb') as f:
|
||||
for chunk in response.iter_content(chunk_size=1024 * 1024): # 1MB chunks
|
||||
if chunk:
|
||||
f.write(chunk)
|
||||
# Move temp file to final location
|
||||
os.rename(temp_path, filepath)
|
||||
print(f"Successfully downloaded {filename}")
|
||||
return True
|
||||
|
||||
except (requests.RequestException, IOError) as e:
|
||||
print(f"Attempt {attempt}/{max_attempts} failed for {filename}: {e}")
|
||||
# Clean up any partial files
|
||||
for path in [filepath + f".tmp", filepath]:
|
||||
if os.path.exists(path):
|
||||
try:
|
||||
os.remove(path)
|
||||
except:
|
||||
pass
|
||||
# Try a few times with exponential backoff: 2^attempt seconds
|
||||
if attempt < max_attempts:
|
||||
wait_time = 2 ** attempt
|
||||
print(f"Waiting {wait_time} seconds before retry...")
|
||||
time.sleep(wait_time)
|
||||
else:
|
||||
print(f"Failed to download {filename} after {max_attempts} attempts")
|
||||
return False
|
||||
|
||||
return False
|
||||
try:
|
||||
# pyarrow.fs uses huggingface_hub with builtin exponential backoff
|
||||
fs.copy_files(uri, filepath)
|
||||
except (requests.RequestException, IOError) as e:
|
||||
print(f"Failed to download {filename}: {e}")
|
||||
return False
|
||||
else:
|
||||
print(f"Successfully downloaded {filename}")
|
||||
return True
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
|||
|
|
@ -17,8 +17,9 @@ import signal
|
|||
import warnings
|
||||
from contextlib import contextmanager
|
||||
from collections import deque
|
||||
from nanochat.common import compute_init
|
||||
from nanochat.common import compute_init, autodetect_device_type
|
||||
from nanochat.checkpoint_manager import load_model
|
||||
from contextlib import nullcontext
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Calculator tool helpers
|
||||
|
|
@ -328,6 +329,9 @@ if __name__ == "__main__":
|
|||
import time
|
||||
# init compute
|
||||
ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init()
|
||||
device_type = autodetect_device_type()
|
||||
autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=torch.bfloat16) if device_type == "cuda" else nullcontext()
|
||||
|
||||
# load the model and tokenizer
|
||||
model, tokenizer, meta = load_model("base", device, phase="eval")
|
||||
bos_token_id = tokenizer.get_bos_token_id()
|
||||
|
|
@ -340,10 +344,11 @@ if __name__ == "__main__":
|
|||
torch.cuda.synchronize()
|
||||
t0 = time.time()
|
||||
stream = model.generate(prompt_tokens, **kwargs)
|
||||
for token in stream:
|
||||
generated_tokens.append(token)
|
||||
chunk = tokenizer.decode([token])
|
||||
print(chunk, end="", flush=True)
|
||||
with autocast_ctx:
|
||||
for token in stream:
|
||||
generated_tokens.append(token)
|
||||
chunk = tokenizer.decode([token])
|
||||
print(chunk, end="", flush=True)
|
||||
print()
|
||||
torch.cuda.synchronize()
|
||||
t1 = time.time()
|
||||
|
|
@ -355,11 +360,12 @@ if __name__ == "__main__":
|
|||
stream = engine.generate(prompt_tokens, num_samples=1, **kwargs) # note: runs in fp32
|
||||
torch.cuda.synchronize()
|
||||
t0 = time.time()
|
||||
for token_column, token_masks in stream:
|
||||
token = token_column[0] # only print out the first row
|
||||
generated_tokens.append(token)
|
||||
chunk = tokenizer.decode([token])
|
||||
print(chunk, end="", flush=True)
|
||||
with autocast_ctx:
|
||||
for token_column, token_masks in stream:
|
||||
token = token_column[0] # only print out the first row
|
||||
generated_tokens.append(token)
|
||||
chunk = tokenizer.decode([token])
|
||||
print(chunk, end="", flush=True)
|
||||
print()
|
||||
torch.cuda.synchronize()
|
||||
t1 = time.time()
|
||||
|
|
|
|||
|
|
@ -9,9 +9,9 @@ import torch.distributed as dist
|
|||
def evaluate_bpb(model, batches, steps, token_bytes):
|
||||
"""
|
||||
Instead of the naive 'mean loss', this function returns the bits per byte (bpb),
|
||||
which is a tokenization vocab size-indepedent metric, meaning you are still comparing
|
||||
which is a tokenization vocab size-independent metric, meaning you are still comparing
|
||||
apples:apples if you change the vocab size. The way this works is that instead of just
|
||||
calculating the average loss as usual, you calculate the sum loss, and indepependently
|
||||
calculating the average loss as usual, you calculate the sum loss, and independently
|
||||
also the sum bytes (of all the target tokens), and divide. This normalizes the loss by
|
||||
the number of bytes that the target tokens represent.
|
||||
|
||||
|
|
|
|||
|
|
@ -9,6 +9,7 @@ dependencies = [
|
|||
"fastapi>=0.117.1",
|
||||
"files-to-prompt>=0.6",
|
||||
"psutil>=7.1.0",
|
||||
"pyarrow>=21.0.0",
|
||||
"regex>=2025.9.1",
|
||||
"setuptools>=80.9.0",
|
||||
"tiktoken>=0.11.0",
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
"""
|
||||
Evaluate the Chat model.
|
||||
All the generic code lives here, and all the evlauation-specific
|
||||
All the generic code lives here, and all the evaluation-specific
|
||||
code lives in nanochat directory and is imported from here.
|
||||
|
||||
Example runs:
|
||||
|
|
|
|||
|
|
@ -192,7 +192,7 @@ for step in range(num_iterations):
|
|||
})
|
||||
model.train()
|
||||
|
||||
# evlauate accuracy of the multiple choice tasks (which are quick to run)
|
||||
# evaluate accuracy of the multiple choice tasks (which are quick to run)
|
||||
if last_step or (step > 0 and step % eval_metrics_every == 0):
|
||||
model.eval()
|
||||
metrics = {}
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user