mirror of
https://github.com/karpathy/nanochat.git
synced 2025-12-06 04:12:13 +00:00
Compare commits
10 Commits
3ad83ecbc0
...
551fe1dc9e
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
551fe1dc9e | ||
|
|
f66a780f68 | ||
|
|
4763ce612a | ||
|
|
c6f5bd67db | ||
|
|
a2fb3c83a6 | ||
|
|
e5efb4b471 | ||
|
|
2dc85662c3 | ||
|
|
b399e43168 | ||
|
|
52e85aaf80 | ||
|
|
70319851fc |
|
|
@ -184,6 +184,7 @@ python -m pytest tests/test_rustbpe.py -v -s
|
||||||
│ ├── smoltalk.py # Conglomerate dataset of SmolTalk from HF
|
│ ├── smoltalk.py # Conglomerate dataset of SmolTalk from HF
|
||||||
│ └── spellingbee.py # Task teaching model to spell/count letters
|
│ └── spellingbee.py # Task teaching model to spell/count letters
|
||||||
├── tests
|
├── tests
|
||||||
|
│ └── test_engine.py
|
||||||
│ └── test_rustbpe.py
|
│ └── test_rustbpe.py
|
||||||
└── uv.lock
|
└── uv.lock
|
||||||
```
|
```
|
||||||
|
|
|
||||||
|
|
@ -113,12 +113,24 @@ def print_banner():
|
||||||
"""
|
"""
|
||||||
print0(banner)
|
print0(banner)
|
||||||
|
|
||||||
def is_ddp():
|
def is_ddp_requested() -> bool:
|
||||||
# TODO is there a proper way
|
"""
|
||||||
return int(os.environ.get('RANK', -1)) != -1
|
True if launched by torchrun (env present), even before init.
|
||||||
|
Used to decide whether we *should* initialize a PG.
|
||||||
|
"""
|
||||||
|
return all(k in os.environ for k in ("RANK", "LOCAL_RANK", "WORLD_SIZE"))
|
||||||
|
|
||||||
|
def is_ddp_initialized() -> bool:
|
||||||
|
"""
|
||||||
|
True if torch.distributed is available and the process group is initialized.
|
||||||
|
Used at cleanup to avoid destroying a non-existent PG.
|
||||||
|
"""
|
||||||
|
return dist.is_available() and dist.is_initialized()
|
||||||
|
|
||||||
def get_dist_info():
|
def get_dist_info():
|
||||||
if is_ddp():
|
if is_ddp_requested():
|
||||||
|
# We rely on torchrun's env to decide if we SHOULD init.
|
||||||
|
# (Initialization itself happens in compute init.)
|
||||||
assert all(var in os.environ for var in ['RANK', 'LOCAL_RANK', 'WORLD_SIZE'])
|
assert all(var in os.environ for var in ['RANK', 'LOCAL_RANK', 'WORLD_SIZE'])
|
||||||
ddp_rank = int(os.environ['RANK'])
|
ddp_rank = int(os.environ['RANK'])
|
||||||
ddp_local_rank = int(os.environ['LOCAL_RANK'])
|
ddp_local_rank = int(os.environ['LOCAL_RANK'])
|
||||||
|
|
@ -161,8 +173,8 @@ def compute_init(device_type="cuda"): # cuda|cpu|mps
|
||||||
torch.set_float32_matmul_precision("high") # uses tf32 instead of fp32 for matmuls
|
torch.set_float32_matmul_precision("high") # uses tf32 instead of fp32 for matmuls
|
||||||
|
|
||||||
# Distributed setup: Distributed Data Parallel (DDP), optional, and requires CUDA
|
# Distributed setup: Distributed Data Parallel (DDP), optional, and requires CUDA
|
||||||
ddp, ddp_rank, ddp_local_rank, ddp_world_size = get_dist_info()
|
is_ddp_requested, ddp_rank, ddp_local_rank, ddp_world_size = get_dist_info()
|
||||||
if ddp and device_type == "cuda":
|
if is_ddp_requested and device_type == "cuda":
|
||||||
device = torch.device("cuda", ddp_local_rank)
|
device = torch.device("cuda", ddp_local_rank)
|
||||||
torch.cuda.set_device(device) # make "cuda" default to this device
|
torch.cuda.set_device(device) # make "cuda" default to this device
|
||||||
dist.init_process_group(backend="nccl", device_id=device)
|
dist.init_process_group(backend="nccl", device_id=device)
|
||||||
|
|
@ -173,11 +185,11 @@ def compute_init(device_type="cuda"): # cuda|cpu|mps
|
||||||
if ddp_rank == 0:
|
if ddp_rank == 0:
|
||||||
logger.info(f"Distributed world size: {ddp_world_size}")
|
logger.info(f"Distributed world size: {ddp_world_size}")
|
||||||
|
|
||||||
return ddp, ddp_rank, ddp_local_rank, ddp_world_size, device
|
return is_ddp_requested, ddp_rank, ddp_local_rank, ddp_world_size, device
|
||||||
|
|
||||||
def compute_cleanup():
|
def compute_cleanup():
|
||||||
"""Companion function to compute_init, to clean things up before script exit"""
|
"""Companion function to compute_init, to clean things up before script exit"""
|
||||||
if is_ddp():
|
if is_ddp_initialized():
|
||||||
dist.destroy_process_group()
|
dist.destroy_process_group()
|
||||||
|
|
||||||
class DummyWandb:
|
class DummyWandb:
|
||||||
|
|
|
||||||
|
|
@ -17,8 +17,9 @@ import signal
|
||||||
import warnings
|
import warnings
|
||||||
from contextlib import contextmanager
|
from contextlib import contextmanager
|
||||||
from collections import deque
|
from collections import deque
|
||||||
from nanochat.common import compute_init
|
from nanochat.common import compute_init, autodetect_device_type
|
||||||
from nanochat.checkpoint_manager import load_model
|
from nanochat.checkpoint_manager import load_model
|
||||||
|
from contextlib import nullcontext
|
||||||
|
|
||||||
# -----------------------------------------------------------------------------
|
# -----------------------------------------------------------------------------
|
||||||
# Calculator tool helpers
|
# Calculator tool helpers
|
||||||
|
|
@ -328,6 +329,9 @@ if __name__ == "__main__":
|
||||||
import time
|
import time
|
||||||
# init compute
|
# init compute
|
||||||
ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init()
|
ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init()
|
||||||
|
device_type = autodetect_device_type()
|
||||||
|
autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=torch.bfloat16) if device_type == "cuda" else nullcontext()
|
||||||
|
|
||||||
# load the model and tokenizer
|
# load the model and tokenizer
|
||||||
model, tokenizer, meta = load_model("base", device, phase="eval")
|
model, tokenizer, meta = load_model("base", device, phase="eval")
|
||||||
bos_token_id = tokenizer.get_bos_token_id()
|
bos_token_id = tokenizer.get_bos_token_id()
|
||||||
|
|
@ -340,10 +344,11 @@ if __name__ == "__main__":
|
||||||
torch.cuda.synchronize()
|
torch.cuda.synchronize()
|
||||||
t0 = time.time()
|
t0 = time.time()
|
||||||
stream = model.generate(prompt_tokens, **kwargs)
|
stream = model.generate(prompt_tokens, **kwargs)
|
||||||
for token in stream:
|
with autocast_ctx:
|
||||||
generated_tokens.append(token)
|
for token in stream:
|
||||||
chunk = tokenizer.decode([token])
|
generated_tokens.append(token)
|
||||||
print(chunk, end="", flush=True)
|
chunk = tokenizer.decode([token])
|
||||||
|
print(chunk, end="", flush=True)
|
||||||
print()
|
print()
|
||||||
torch.cuda.synchronize()
|
torch.cuda.synchronize()
|
||||||
t1 = time.time()
|
t1 = time.time()
|
||||||
|
|
@ -355,11 +360,12 @@ if __name__ == "__main__":
|
||||||
stream = engine.generate(prompt_tokens, num_samples=1, **kwargs) # note: runs in fp32
|
stream = engine.generate(prompt_tokens, num_samples=1, **kwargs) # note: runs in fp32
|
||||||
torch.cuda.synchronize()
|
torch.cuda.synchronize()
|
||||||
t0 = time.time()
|
t0 = time.time()
|
||||||
for token_column, token_masks in stream:
|
with autocast_ctx:
|
||||||
token = token_column[0] # only print out the first row
|
for token_column, token_masks in stream:
|
||||||
generated_tokens.append(token)
|
token = token_column[0] # only print out the first row
|
||||||
chunk = tokenizer.decode([token])
|
generated_tokens.append(token)
|
||||||
print(chunk, end="", flush=True)
|
chunk = tokenizer.decode([token])
|
||||||
|
print(chunk, end="", flush=True)
|
||||||
print()
|
print()
|
||||||
torch.cuda.synchronize()
|
torch.cuda.synchronize()
|
||||||
t1 = time.time()
|
t1 = time.time()
|
||||||
|
|
|
||||||
|
|
@ -9,9 +9,9 @@ import torch.distributed as dist
|
||||||
def evaluate_bpb(model, batches, steps, token_bytes):
|
def evaluate_bpb(model, batches, steps, token_bytes):
|
||||||
"""
|
"""
|
||||||
Instead of the naive 'mean loss', this function returns the bits per byte (bpb),
|
Instead of the naive 'mean loss', this function returns the bits per byte (bpb),
|
||||||
which is a tokenization vocab size-indepedent metric, meaning you are still comparing
|
which is a tokenization vocab size-independent metric, meaning you are still comparing
|
||||||
apples:apples if you change the vocab size. The way this works is that instead of just
|
apples:apples if you change the vocab size. The way this works is that instead of just
|
||||||
calculating the average loss as usual, you calculate the sum loss, and indepependently
|
calculating the average loss as usual, you calculate the sum loss, and independently
|
||||||
also the sum bytes (of all the target tokens), and divide. This normalizes the loss by
|
also the sum bytes (of all the target tokens), and divide. This normalizes the loss by
|
||||||
the number of bytes that the target tokens represent.
|
the number of bytes that the target tokens represent.
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -1,6 +1,6 @@
|
||||||
"""
|
"""
|
||||||
Evaluate the Chat model.
|
Evaluate the Chat model.
|
||||||
All the generic code lives here, and all the evlauation-specific
|
All the generic code lives here, and all the evaluation-specific
|
||||||
code lives in nanochat directory and is imported from here.
|
code lives in nanochat directory and is imported from here.
|
||||||
|
|
||||||
Example runs:
|
Example runs:
|
||||||
|
|
|
||||||
|
|
@ -192,7 +192,7 @@ for step in range(num_iterations):
|
||||||
})
|
})
|
||||||
model.train()
|
model.train()
|
||||||
|
|
||||||
# evlauate accuracy of the multiple choice tasks (which are quick to run)
|
# evaluate accuracy of the multiple choice tasks (which are quick to run)
|
||||||
if last_step or (step > 0 and step % eval_metrics_every == 0):
|
if last_step or (step > 0 and step % eval_metrics_every == 0):
|
||||||
model.eval()
|
model.eval()
|
||||||
metrics = {}
|
metrics = {}
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue
Block a user