mirror of
https://github.com/karpathy/nanochat.git
synced 2025-12-06 04:12:13 +00:00
Merge 4715fdcf52 into f66a780f68
This commit is contained in:
commit
f77590ab9a
|
|
@ -13,3 +13,4 @@ pyo3-log = "0.12.4"
|
|||
ahash = "0.8.12"
|
||||
rayon = "1.11.0"
|
||||
compact_str = "0.9.0"
|
||||
num-format = "0.4"
|
||||
|
|
|
|||
|
|
@ -6,6 +6,7 @@ use fancy_regex::Regex;
|
|||
use pyo3::prelude::*;
|
||||
|
||||
use ahash::{AHashMap, AHashSet};
|
||||
use num_format::{Locale, ToFormattedString};
|
||||
use compact_str::CompactString;
|
||||
use rayon::prelude::*;
|
||||
|
||||
|
|
@ -164,15 +165,15 @@ impl Tokenizer {
|
|||
fn train_core_incremental(&mut self, mut words: Vec<Word>, counts: Vec<i32>, vocab_size: u32) {
|
||||
assert!(vocab_size >= 256, "vocab_size must be at least 256");
|
||||
let num_merges = vocab_size - 256;
|
||||
log::info!("Starting BPE training: {} merges to compute", num_merges);
|
||||
log::info!("Starting BPE training: {} merges to compute", num_merges.to_formatted_string(&Locale::en));
|
||||
self.merges.clear();
|
||||
|
||||
// ---- Initial pair_counts and where_to_update (parallel) ----
|
||||
log::info!("Computing initial pair counts from {} unique sequences", words.len());
|
||||
log::info!("Computing initial pair counts from {} unique sequences", words.len().to_formatted_string(&Locale::en));
|
||||
let (mut pair_counts, mut where_to_update) = count_pairs_parallel(&words, &counts);
|
||||
|
||||
// ---- Build heap ----
|
||||
log::info!("Building heap with {} unique pairs", pair_counts.len());
|
||||
log::info!("Building heap with {} unique pairs", pair_counts.len().to_formatted_string(&Locale::en));
|
||||
let mut heap = OctonaryHeap::with_capacity(pair_counts.len());
|
||||
for (pair, pos) in where_to_update.drain() {
|
||||
let c = *pair_counts.get(&pair).unwrap_or(&0);
|
||||
|
|
@ -375,7 +376,7 @@ impl Tokenizer {
|
|||
break;
|
||||
}
|
||||
}
|
||||
log::info!("Processed {} sequences total, {} unique", total_sequences, counts.len());
|
||||
log::info!("Processed {} sequences total, {} unique", total_sequences.to_formatted_string(&Locale::en), counts.len().to_formatted_string(&Locale::en));
|
||||
|
||||
// Materialize words & counts
|
||||
let mut words = Vec::with_capacity(counts.len());
|
||||
|
|
|
|||
|
|
@ -196,9 +196,9 @@ RESET = '\033[0m'
|
|||
|
||||
# Print vocab sizes
|
||||
print(f"\nVocab sizes:")
|
||||
print(f"GPT-2: {vocab_sizes['gpt2']}")
|
||||
print(f"GPT-4: {vocab_sizes['gpt4']}")
|
||||
print(f"Ours: {vocab_sizes['ours']}")
|
||||
print(f"GPT-2: {vocab_sizes['gpt2']:,}")
|
||||
print(f"GPT-4: {vocab_sizes['gpt4']:,}")
|
||||
print(f"Ours: {vocab_sizes['ours']:,}")
|
||||
|
||||
def print_comparison(baseline_name, baseline_results, ours_results, all_text):
|
||||
"""Print comparison table between baseline tokenizer and ours."""
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user