Make speedrun.sh configurable for different GPU setups

Added --nproc-per-node and --device-batch-size arguments so the script
can run on smaller hardware. Default is still 8 GPUs for the original
speedrun, but now you can do --nproc-per-node=1 --device-batch-size=2
for a single 16GB GPU.
This commit is contained in:
Abylay Ospan 2025-10-15 22:20:35 +00:00
parent 4346536ab2
commit ed63b87682

View File

@ -9,6 +9,48 @@
# screen -L -Logfile speedrun.log -S speedrun bash speedrun.sh
# 3) Example launch with wandb logging, but see below for setting up wandb first:
# WANDB_RUN=speedrun screen -L -Logfile speedrun.log -S speedrun bash speedrun.sh
# 4) Example launch for single GPU with 16GB VRAM:
# bash speedrun.sh --nproc-per-node=1 --device-batch-size=2
# -----------------------------------------------------------------------------
# Parse command-line arguments
NPROC_PER_NODE=8
DEVICE_BATCH_SIZE="" # empty means use default from training scripts
usage() {
echo "Usage: $0 [OPTIONS]"
echo "Options:"
echo " --nproc-per-node=N Number of GPUs to use (default: 8)"
echo " --device-batch-size=N Device batch size for training (default: script defaults)"
echo " -h, --help Show this help message"
exit 1
}
for arg in "$@"; do
case $arg in
--nproc-per-node=*)
NPROC_PER_NODE="${arg#*=}"
shift
;;
--device-batch-size=*)
DEVICE_BATCH_SIZE="${arg#*=}"
shift
;;
-h|--help)
usage
;;
*)
echo "Unknown option: $arg"
usage
;;
esac
done
echo "Configuration:"
echo " NPROC_PER_NODE: $NPROC_PER_NODE"
echo " DEVICE_BATCH_SIZE: ${DEVICE_BATCH_SIZE:-default}"
echo ""
# Default intermediate artifacts directory is in ~/.cache/nanochat
export OMP_NUM_THREADS=1
@ -92,25 +134,27 @@ echo "Waiting for dataset download to complete..."
wait $DATASET_DOWNLOAD_PID
# pretrain the d20 model
torchrun --standalone --nproc_per_node=8 -m scripts.base_train -- --depth=20 --run=$WANDB_RUN
BATCH_SIZE_ARG=""
[ -n "$DEVICE_BATCH_SIZE" ] && BATCH_SIZE_ARG="--device_batch_size=$DEVICE_BATCH_SIZE"
torchrun --standalone --nproc_per_node=$NPROC_PER_NODE -m scripts.base_train -- --depth=20 $BATCH_SIZE_ARG --run=$WANDB_RUN
# evaluate the model on a larger chunk of train/val data and draw some samples
torchrun --standalone --nproc_per_node=8 -m scripts.base_loss
torchrun --standalone --nproc_per_node=$NPROC_PER_NODE -m scripts.base_loss
# evaluate the model on CORE tasks
torchrun --standalone --nproc_per_node=8 -m scripts.base_eval
torchrun --standalone --nproc_per_node=$NPROC_PER_NODE -m scripts.base_eval
# -----------------------------------------------------------------------------
# Midtraining (teach the model conversation special tokens, tool use, multiple choice)
# run midtraining and eval the model
torchrun --standalone --nproc_per_node=8 -m scripts.mid_train -- --run=$WANDB_RUN
torchrun --standalone --nproc_per_node=8 -m scripts.chat_eval -- -i mid
torchrun --standalone --nproc_per_node=$NPROC_PER_NODE -m scripts.mid_train -- $BATCH_SIZE_ARG --run=$WANDB_RUN
torchrun --standalone --nproc_per_node=$NPROC_PER_NODE -m scripts.chat_eval -- -i mid
# -----------------------------------------------------------------------------
# Supervised Finetuning (domain adaptation to each sequence all by itself per row)
# train sft and re-eval right away (should see a small bump)
torchrun --standalone --nproc_per_node=8 -m scripts.chat_sft -- --run=$WANDB_RUN
torchrun --standalone --nproc_per_node=8 -m scripts.chat_eval -- -i sft
torchrun --standalone --nproc_per_node=$NPROC_PER_NODE -m scripts.chat_sft -- $BATCH_SIZE_ARG --run=$WANDB_RUN
torchrun --standalone --nproc_per_node=$NPROC_PER_NODE -m scripts.chat_eval -- -i sft
# chat with the model over CLI! Leave out the -p to chat interactively
# python -m scripts.chat_cli -p "Why is the sky blue?"
@ -123,9 +167,9 @@ torchrun --standalone --nproc_per_node=8 -m scripts.chat_eval -- -i sft
# (optional)
# run reinforcement learning
# torchrun --standalone --nproc_per_node=8 -m scripts.chat_rl -- --run=$WANDB_RUN
# torchrun --standalone --nproc_per_node=$NPROC_PER_NODE -m scripts.chat_rl -- $BATCH_SIZE_ARG --run=$WANDB_RUN
# eval the RL model only on GSM8K
# torchrun --standalone --nproc_per_node=8 -m scripts.chat_eval -- -i rl -a GSM8K
# torchrun --standalone --nproc_per_node=$NPROC_PER_NODE -m scripts.chat_eval -- -i rl -a GSM8K
# -----------------------------------------------------------------------------
# Generate the full report by putting together all the sections