mirror of
https://github.com/karpathy/nanochat.git
synced 2026-01-20 10:23:42 +00:00
Merge a58bbbaf59 into 63bb5831e2
This commit is contained in:
commit
d9a263bb5f
|
|
@ -308,7 +308,7 @@ if __name__ == "__main__":
|
|||
# init compute
|
||||
ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init()
|
||||
device_type = autodetect_device_type()
|
||||
autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=torch.bfloat16) if device_type == "cuda" else nullcontext()
|
||||
autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=torch.bfloat16) if device_type != "cpu" else nullcontext()
|
||||
|
||||
# load the model and tokenizer
|
||||
model, tokenizer, meta = load_model("base", device, phase="eval")
|
||||
|
|
|
|||
|
|
@ -156,7 +156,7 @@ def main():
|
|||
# distributed / precision setup
|
||||
device_type = autodetect_device_type()
|
||||
ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init(device_type)
|
||||
autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=torch.bfloat16) if device_type == "cuda" else nullcontext()
|
||||
autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=torch.bfloat16) if device_type != "cpu" else nullcontext()
|
||||
|
||||
# Load model and tokenizer from command line or from file system
|
||||
if args.hf_path is not None:
|
||||
|
|
|
|||
|
|
@ -87,7 +87,7 @@ else:
|
|||
token_bytes = get_token_bytes(device=device)
|
||||
model_name = f"base_model (step {meta['step']})"
|
||||
|
||||
autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=torch.bfloat16) if device_type == "cuda" else nullcontext()
|
||||
autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=torch.bfloat16) if device_type != "cpu" else nullcontext()
|
||||
|
||||
print0(f"Evaluating model: {model_name}")
|
||||
|
||||
|
|
|
|||
|
|
@ -79,9 +79,9 @@ user_config = vars(args).copy() # for logging
|
|||
device_type = autodetect_device_type() if args.device_type == "" else args.device_type
|
||||
ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init(device_type)
|
||||
master_process = ddp_rank == 0 # this process will do logging, checkpointing etc.
|
||||
autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=torch.bfloat16) if device_type == "cuda" else nullcontext()
|
||||
synchronize = torch.cuda.synchronize if device_type == "cuda" else lambda: None
|
||||
get_max_memory = torch.cuda.max_memory_allocated if device_type == "cuda" else lambda: 0
|
||||
autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=torch.bfloat16) if device_type != "cpu" else nullcontext()
|
||||
synchronize = torch.cuda.synchronize if device_type != "cpu" else lambda: None
|
||||
get_max_memory = torch.cuda.max_memory_allocated if device_type != "cpu" else lambda: 0
|
||||
if device_type == "cuda":
|
||||
gpu_device_name = torch.cuda.get_device_name(0)
|
||||
gpu_peak_flops = get_peak_flops(gpu_device_name)
|
||||
|
|
|
|||
|
|
@ -27,7 +27,7 @@ args = parser.parse_args()
|
|||
device_type = autodetect_device_type() if args.device_type == "" else args.device_type
|
||||
ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init(device_type)
|
||||
ptdtype = torch.float32 if args.dtype == 'float32' else torch.bfloat16
|
||||
autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) if device_type == "cuda" else nullcontext()
|
||||
autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) if device_type != "cpu" else nullcontext()
|
||||
model, tokenizer, meta = load_model(args.source, device, phase="eval", model_tag=args.model_tag, step=args.step)
|
||||
|
||||
# Special tokens for the chat state machine
|
||||
|
|
|
|||
|
|
@ -200,7 +200,7 @@ if __name__ == "__main__":
|
|||
device_type = autodetect_device_type() if args.device_type == "" else args.device_type
|
||||
ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init(device_type)
|
||||
ptdtype = torch.float32 if args.dtype == 'float32' else torch.bfloat16
|
||||
autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) if device_type == "cuda" else nullcontext()
|
||||
autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) if device_type != "cpu" else nullcontext()
|
||||
|
||||
model, tokenizer, meta = load_model(args.source, device, phase="eval", model_tag=args.model_tag, step=args.step)
|
||||
engine = Engine(model, tokenizer)
|
||||
|
|
|
|||
|
|
@ -69,7 +69,7 @@ device_type = autodetect_device_type() if args.device_type == "" else args.devic
|
|||
ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init(device_type)
|
||||
master_process = ddp_rank == 0
|
||||
ptdtype = torch.float32 if args.dtype == 'float32' else torch.bfloat16
|
||||
autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) if device_type == "cuda" else nullcontext()
|
||||
autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) if device_type != "cpu" else nullcontext()
|
||||
|
||||
# wandb logging init
|
||||
use_dummy_wandb = args.run == "dummy" or not master_process
|
||||
|
|
|
|||
|
|
@ -100,7 +100,7 @@ class WorkerPool:
|
|||
|
||||
def __init__(self, num_gpus: Optional[int] = None):
|
||||
if num_gpus is None:
|
||||
if device_type == "cuda":
|
||||
if device_type != "cpu":
|
||||
num_gpus = torch.cuda.device_count()
|
||||
else:
|
||||
num_gpus = 1 # e.g. cpu|mps
|
||||
|
|
@ -112,11 +112,11 @@ class WorkerPool:
|
|||
"""Load model on each GPU."""
|
||||
print(f"Initializing worker pool with {self.num_gpus} GPUs...")
|
||||
if self.num_gpus > 1:
|
||||
assert device_type == "cuda", "Only CUDA supports multiple workers/GPUs. cpu|mps does not."
|
||||
assert device_type != "cpu", "Only CUDA supports multiple workers/GPUs. cpu|mps does not."
|
||||
|
||||
for gpu_id in range(self.num_gpus):
|
||||
|
||||
if device_type == "cuda":
|
||||
if device_type != "cpu":
|
||||
device = torch.device(f"cuda:{gpu_id}")
|
||||
print(f"Loading model on GPU {gpu_id}...")
|
||||
else:
|
||||
|
|
@ -125,7 +125,7 @@ class WorkerPool:
|
|||
|
||||
model, tokenizer, _ = load_model(source, device, phase="eval", model_tag=model_tag, step=step)
|
||||
engine = Engine(model, tokenizer)
|
||||
autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) if device_type == "cuda" else nullcontext()
|
||||
autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) if device_type != "cpu" else nullcontext()
|
||||
|
||||
worker = Worker(
|
||||
gpu_id=gpu_id,
|
||||
|
|
|
|||
|
|
@ -67,9 +67,9 @@ device_type = autodetect_device_type() if args.device_type == "" else args.devic
|
|||
ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init(device_type)
|
||||
master_process = ddp_rank == 0
|
||||
ptdtype = torch.float32 if args.dtype == 'float32' else torch.bfloat16
|
||||
autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) if device_type == "cuda" else nullcontext()
|
||||
synchronize = torch.cuda.synchronize if device_type == "cuda" else lambda: None
|
||||
get_max_memory = torch.cuda.max_memory_allocated if device_type == "cuda" else lambda: 0
|
||||
autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) if device_type != "cpu" else nullcontext()
|
||||
synchronize = torch.cuda.synchronize if device_type != "cpu" else lambda: None
|
||||
get_max_memory = torch.cuda.max_memory_allocated if device_type != "cpu" else lambda: 0
|
||||
|
||||
# wandb logging init
|
||||
use_dummy_wandb = args.run == "dummy" or not master_process
|
||||
|
|
@ -209,7 +209,7 @@ def mid_data_generator_bos_bestfit(split, buffer_size=100):
|
|||
last_step = True
|
||||
|
||||
# Build tensors
|
||||
use_cuda = device_type == "cuda"
|
||||
use_cuda = device_type != "cpu"
|
||||
batch_tensor = torch.tensor(rows, dtype=torch.long, pin_memory=use_cuda)
|
||||
inputs = batch_tensor[:, :-1].to(device=device, dtype=torch.int32, non_blocking=use_cuda)
|
||||
targets = batch_tensor[:, 1:].to(device=device, dtype=torch.int64, non_blocking=use_cuda)
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user