fix bug in learning rate multiplier, it was ramping up instead of ramping down. see more in Issue #68. also add --dry_run option useful for experimentation

This commit is contained in:
Andrej Karpathy 2025-10-15 16:35:04 +00:00
parent 67aaca98f5
commit b8076dd367

View File

@ -40,10 +40,10 @@ embedding_lr = 0.2
matrix_lr = 0.02
init_lr_frac = 1.0 # initial learning rate is this fraction of the base learning rate
weight_decay = 0.0
final_lr_frac = 0.0 # final LR is this fraction of the initial LR
eval_every = 150
eval_tokens = 20*524288
total_batch_size = 524288
dry_run = 0 # dry_run=1 is for experiments: we will log to wandb but we won't write checkpoints or report
config_keys = [k for k,v in globals().items() if not k.startswith('_') and isinstance(v, (int, float, bool, str))]
exec(open(os.path.join('nanochat', 'configurator.py')).read()) # overrides from command line or config file
user_config = {k: globals()[k] for k in config_keys} # possibly useful for logging
@ -141,7 +141,8 @@ progress = 0 # will go from 0 to 1 over the course of the epoch
# Learning rate scheduler
def get_lr_multiplier(progress):
return progress * 1.0 + (1 - progress) * final_lr_frac
# first 80% of training: no decay, then linearly ramp down to 0.
return 1 if progress < 0.8 else 1 - (progress - 0.8) / 0.2
# Momentum scheduler for Muon optimizer
def get_muon_momentum(it):
@ -185,7 +186,7 @@ while True:
model.train()
# save checkpoint at the end of the run (only on master process)
if master_process and last_step:
if master_process and last_step and not dry_run:
output_dirname = f"d{depth}" # e.g. d12
checkpoint_dir = os.path.join(base_dir, "mid_checkpoints", output_dirname)
save_checkpoint(
@ -272,6 +273,7 @@ print0(f"Total training time: {total_training_time/60:.2f}m")
print0(f"Minimum validation bpb: {min_val_bpb:.4f}")
# Log to report
if not dry_run:
from nanochat.report import get_report
get_report().log(section="Midtraining", data=[
user_config, # CLI args