mirror of
https://github.com/karpathy/nanochat.git
synced 2026-01-21 10:54:15 +00:00
naturally i failed to include the actual code in the previous commit facepalm
This commit is contained in:
parent
8203efa919
commit
b62a5bc44a
178
nanochat/flash_attention.py
Normal file
178
nanochat/flash_attention.py
Normal file
|
|
@ -0,0 +1,178 @@
|
|||
"""
|
||||
Unified Flash Attention interface with automatic FA3/SDPA switching.
|
||||
|
||||
Exports `flash_attn` module that matches the FA3 API exactly, but falls back
|
||||
to PyTorch SDPA on non-Hopper GPUs, MPS, and CPU.
|
||||
|
||||
Usage (drop-in replacement for FA3):
|
||||
from nanochat.flash_attention import flash_attn
|
||||
|
||||
# Training (no KV cache)
|
||||
y = flash_attn.flash_attn_func(q, k, v, causal=True, window_size=window_size)
|
||||
|
||||
# Inference (with KV cache)
|
||||
y = flash_attn.flash_attn_with_kvcache(q, k_cache, v_cache, k=k, v=v, ...)
|
||||
"""
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
# =============================================================================
|
||||
# Detection: Try to load FA3 on Hopper+ GPUs
|
||||
# =============================================================================
|
||||
def _load_flash_attention_3():
|
||||
"""Try to load Flash Attention 3 (requires Hopper+ GPU)."""
|
||||
if not torch.cuda.is_available():
|
||||
return None
|
||||
try:
|
||||
major, _ = torch.cuda.get_device_capability()
|
||||
if major < 9: # Hopper is sm90
|
||||
return None
|
||||
import os
|
||||
os.environ["HF_HUB_DISABLE_PROGRESS_BARS"] = "1"
|
||||
from kernels import get_kernel
|
||||
return get_kernel('varunneal/flash-attention-3').flash_attn_interface
|
||||
except Exception:
|
||||
return None
|
||||
|
||||
|
||||
_fa3 = _load_flash_attention_3()
|
||||
HAS_FA3 = _fa3 is not None
|
||||
|
||||
# Override for testing: set to 'fa3', 'sdpa', or None (auto)
|
||||
_override_impl = None
|
||||
|
||||
|
||||
def _use_fa3():
|
||||
"""Determine whether to use FA3 based on availability and override."""
|
||||
if _override_impl == 'fa3':
|
||||
assert HAS_FA3, "Cannot override to FA3: not available on this hardware"
|
||||
return True
|
||||
if _override_impl == 'sdpa':
|
||||
return False
|
||||
return HAS_FA3 # auto
|
||||
|
||||
|
||||
# =============================================================================
|
||||
# SDPA helpers
|
||||
# =============================================================================
|
||||
def _sdpa_attention(q, k, v, window_size, enable_gqa):
|
||||
"""
|
||||
SDPA attention with sliding window support.
|
||||
q, k, v are (B, H, T, D) format.
|
||||
"""
|
||||
Tq = q.size(2)
|
||||
Tk = k.size(2)
|
||||
window = window_size[0]
|
||||
|
||||
# Full context, same length
|
||||
if (window < 0 or window >= Tq) and Tq == Tk:
|
||||
return F.scaled_dot_product_attention(q, k, v, is_causal=True, enable_gqa=enable_gqa)
|
||||
|
||||
# Single token generation
|
||||
if Tq == 1:
|
||||
return F.scaled_dot_product_attention(q, k, v, is_causal=False, enable_gqa=enable_gqa)
|
||||
|
||||
# Need explicit mask
|
||||
device = q.device
|
||||
if Tq == Tk:
|
||||
# Causal + sliding window
|
||||
mask = torch.tril(torch.ones(Tq, Tk, device=device, dtype=torch.bool))
|
||||
if window > 0 and window < Tq:
|
||||
row_idx = torch.arange(Tq, device=device).unsqueeze(1)
|
||||
col_idx = torch.arange(Tk, device=device).unsqueeze(0)
|
||||
mask = mask & ((row_idx - col_idx) <= window)
|
||||
else:
|
||||
# Chunk inference: attend to prefix + causal within chunk
|
||||
prefix_len = Tk - Tq
|
||||
mask = torch.zeros(Tq, Tk, device=device, dtype=torch.bool)
|
||||
mask[:, :prefix_len] = True
|
||||
mask[:, prefix_len:] = torch.tril(torch.ones(Tq, Tq, device=device, dtype=torch.bool))
|
||||
|
||||
return F.scaled_dot_product_attention(q, k, v, attn_mask=mask, enable_gqa=enable_gqa)
|
||||
|
||||
|
||||
# =============================================================================
|
||||
# Public API: Same interface as FA3
|
||||
# =============================================================================
|
||||
def flash_attn_func(q, k, v, causal=False, window_size=(-1, -1)):
|
||||
"""
|
||||
Flash Attention for training (no KV cache).
|
||||
|
||||
Args:
|
||||
q, k, v: Tensors of shape (B, T, H, D)
|
||||
causal: Whether to use causal masking
|
||||
window_size: (left, right) sliding window. -1 means unlimited.
|
||||
|
||||
Returns:
|
||||
Output tensor of shape (B, T, H, D)
|
||||
"""
|
||||
if _use_fa3():
|
||||
return _fa3.flash_attn_func(q, k, v, causal=causal, window_size=window_size)
|
||||
|
||||
# SDPA fallback: transpose (B, T, H, D) -> (B, H, T, D)
|
||||
q = q.transpose(1, 2)
|
||||
k = k.transpose(1, 2)
|
||||
v = v.transpose(1, 2)
|
||||
enable_gqa = q.size(1) != k.size(1)
|
||||
y = _sdpa_attention(q, k, v, window_size, enable_gqa)
|
||||
return y.transpose(1, 2) # back to (B, T, H, D)
|
||||
|
||||
|
||||
def flash_attn_with_kvcache(q, k_cache, v_cache, k=None, v=None, cache_seqlens=None,
|
||||
causal=False, window_size=(-1, -1)):
|
||||
"""
|
||||
Flash Attention with KV cache for inference.
|
||||
|
||||
FA3 updates k_cache/v_cache in-place. Our SDPA fallback does the same.
|
||||
|
||||
Args:
|
||||
q: Queries, shape (B, T_new, H, D)
|
||||
k_cache, v_cache: Pre-allocated cache tensors, shape (B, T_max, H_kv, D)
|
||||
k, v: New keys/values to insert, shape (B, T_new, H_kv, D)
|
||||
cache_seqlens: Current position in cache, shape (B,) int32
|
||||
causal: Whether to use causal masking
|
||||
window_size: (left, right) sliding window. -1 means unlimited.
|
||||
|
||||
Returns:
|
||||
Output tensor of shape (B, T_new, H, D)
|
||||
"""
|
||||
if _use_fa3():
|
||||
return _fa3.flash_attn_with_kvcache(
|
||||
q, k_cache, v_cache, k=k, v=v, cache_seqlens=cache_seqlens,
|
||||
causal=causal, window_size=window_size
|
||||
)
|
||||
|
||||
# SDPA fallback: manually manage KV cache
|
||||
B, T_new, H, D = q.shape
|
||||
pos = cache_seqlens[0].item() # assume uniform position across batch
|
||||
|
||||
# Insert new k, v into cache (in-place, matching FA3 behavior)
|
||||
if k is not None and v is not None:
|
||||
k_cache[:, pos:pos+T_new, :, :] = k
|
||||
v_cache[:, pos:pos+T_new, :, :] = v
|
||||
|
||||
# Get full cache up to current position + new tokens
|
||||
end_pos = pos + T_new
|
||||
k_full = k_cache[:, :end_pos, :, :]
|
||||
v_full = v_cache[:, :end_pos, :, :]
|
||||
|
||||
# Transpose to SDPA layout: (B, T, H, D) -> (B, H, T, D)
|
||||
q_sdpa = q.transpose(1, 2)
|
||||
k_sdpa = k_full.transpose(1, 2)
|
||||
v_sdpa = v_full.transpose(1, 2)
|
||||
|
||||
enable_gqa = q_sdpa.size(1) != k_sdpa.size(1)
|
||||
y_sdpa = _sdpa_attention(q_sdpa, k_sdpa, v_sdpa, window_size, enable_gqa)
|
||||
|
||||
return y_sdpa.transpose(1, 2) # back to (B, T, H, D)
|
||||
|
||||
|
||||
# =============================================================================
|
||||
# Export: flash_attn module interface (drop-in replacement for FA3)
|
||||
# =============================================================================
|
||||
from types import SimpleNamespace
|
||||
flash_attn = SimpleNamespace(
|
||||
flash_attn_func=flash_attn_func,
|
||||
flash_attn_with_kvcache=flash_attn_with_kvcache,
|
||||
)
|
||||
Loading…
Reference in New Issue
Block a user