naturally i failed to include the actual code in the previous commit facepalm

This commit is contained in:
Andrej Karpathy 2026-01-16 17:39:41 +00:00
parent 8203efa919
commit b62a5bc44a

178
nanochat/flash_attention.py Normal file
View File

@ -0,0 +1,178 @@
"""
Unified Flash Attention interface with automatic FA3/SDPA switching.
Exports `flash_attn` module that matches the FA3 API exactly, but falls back
to PyTorch SDPA on non-Hopper GPUs, MPS, and CPU.
Usage (drop-in replacement for FA3):
from nanochat.flash_attention import flash_attn
# Training (no KV cache)
y = flash_attn.flash_attn_func(q, k, v, causal=True, window_size=window_size)
# Inference (with KV cache)
y = flash_attn.flash_attn_with_kvcache(q, k_cache, v_cache, k=k, v=v, ...)
"""
import torch
import torch.nn.functional as F
# =============================================================================
# Detection: Try to load FA3 on Hopper+ GPUs
# =============================================================================
def _load_flash_attention_3():
"""Try to load Flash Attention 3 (requires Hopper+ GPU)."""
if not torch.cuda.is_available():
return None
try:
major, _ = torch.cuda.get_device_capability()
if major < 9: # Hopper is sm90
return None
import os
os.environ["HF_HUB_DISABLE_PROGRESS_BARS"] = "1"
from kernels import get_kernel
return get_kernel('varunneal/flash-attention-3').flash_attn_interface
except Exception:
return None
_fa3 = _load_flash_attention_3()
HAS_FA3 = _fa3 is not None
# Override for testing: set to 'fa3', 'sdpa', or None (auto)
_override_impl = None
def _use_fa3():
"""Determine whether to use FA3 based on availability and override."""
if _override_impl == 'fa3':
assert HAS_FA3, "Cannot override to FA3: not available on this hardware"
return True
if _override_impl == 'sdpa':
return False
return HAS_FA3 # auto
# =============================================================================
# SDPA helpers
# =============================================================================
def _sdpa_attention(q, k, v, window_size, enable_gqa):
"""
SDPA attention with sliding window support.
q, k, v are (B, H, T, D) format.
"""
Tq = q.size(2)
Tk = k.size(2)
window = window_size[0]
# Full context, same length
if (window < 0 or window >= Tq) and Tq == Tk:
return F.scaled_dot_product_attention(q, k, v, is_causal=True, enable_gqa=enable_gqa)
# Single token generation
if Tq == 1:
return F.scaled_dot_product_attention(q, k, v, is_causal=False, enable_gqa=enable_gqa)
# Need explicit mask
device = q.device
if Tq == Tk:
# Causal + sliding window
mask = torch.tril(torch.ones(Tq, Tk, device=device, dtype=torch.bool))
if window > 0 and window < Tq:
row_idx = torch.arange(Tq, device=device).unsqueeze(1)
col_idx = torch.arange(Tk, device=device).unsqueeze(0)
mask = mask & ((row_idx - col_idx) <= window)
else:
# Chunk inference: attend to prefix + causal within chunk
prefix_len = Tk - Tq
mask = torch.zeros(Tq, Tk, device=device, dtype=torch.bool)
mask[:, :prefix_len] = True
mask[:, prefix_len:] = torch.tril(torch.ones(Tq, Tq, device=device, dtype=torch.bool))
return F.scaled_dot_product_attention(q, k, v, attn_mask=mask, enable_gqa=enable_gqa)
# =============================================================================
# Public API: Same interface as FA3
# =============================================================================
def flash_attn_func(q, k, v, causal=False, window_size=(-1, -1)):
"""
Flash Attention for training (no KV cache).
Args:
q, k, v: Tensors of shape (B, T, H, D)
causal: Whether to use causal masking
window_size: (left, right) sliding window. -1 means unlimited.
Returns:
Output tensor of shape (B, T, H, D)
"""
if _use_fa3():
return _fa3.flash_attn_func(q, k, v, causal=causal, window_size=window_size)
# SDPA fallback: transpose (B, T, H, D) -> (B, H, T, D)
q = q.transpose(1, 2)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
enable_gqa = q.size(1) != k.size(1)
y = _sdpa_attention(q, k, v, window_size, enable_gqa)
return y.transpose(1, 2) # back to (B, T, H, D)
def flash_attn_with_kvcache(q, k_cache, v_cache, k=None, v=None, cache_seqlens=None,
causal=False, window_size=(-1, -1)):
"""
Flash Attention with KV cache for inference.
FA3 updates k_cache/v_cache in-place. Our SDPA fallback does the same.
Args:
q: Queries, shape (B, T_new, H, D)
k_cache, v_cache: Pre-allocated cache tensors, shape (B, T_max, H_kv, D)
k, v: New keys/values to insert, shape (B, T_new, H_kv, D)
cache_seqlens: Current position in cache, shape (B,) int32
causal: Whether to use causal masking
window_size: (left, right) sliding window. -1 means unlimited.
Returns:
Output tensor of shape (B, T_new, H, D)
"""
if _use_fa3():
return _fa3.flash_attn_with_kvcache(
q, k_cache, v_cache, k=k, v=v, cache_seqlens=cache_seqlens,
causal=causal, window_size=window_size
)
# SDPA fallback: manually manage KV cache
B, T_new, H, D = q.shape
pos = cache_seqlens[0].item() # assume uniform position across batch
# Insert new k, v into cache (in-place, matching FA3 behavior)
if k is not None and v is not None:
k_cache[:, pos:pos+T_new, :, :] = k
v_cache[:, pos:pos+T_new, :, :] = v
# Get full cache up to current position + new tokens
end_pos = pos + T_new
k_full = k_cache[:, :end_pos, :, :]
v_full = v_cache[:, :end_pos, :, :]
# Transpose to SDPA layout: (B, T, H, D) -> (B, H, T, D)
q_sdpa = q.transpose(1, 2)
k_sdpa = k_full.transpose(1, 2)
v_sdpa = v_full.transpose(1, 2)
enable_gqa = q_sdpa.size(1) != k_sdpa.size(1)
y_sdpa = _sdpa_attention(q_sdpa, k_sdpa, v_sdpa, window_size, enable_gqa)
return y_sdpa.transpose(1, 2) # back to (B, T, H, D)
# =============================================================================
# Export: flash_attn module interface (drop-in replacement for FA3)
# =============================================================================
from types import SimpleNamespace
flash_attn = SimpleNamespace(
flash_attn_func=flash_attn_func,
flash_attn_with_kvcache=flash_attn_with_kvcache,
)