mirror of
https://github.com/karpathy/nanochat.git
synced 2025-12-09 22:02:14 +00:00
Fix gradient accumulation for variable length sequences
This commit is contained in:
parent
67aaca98f5
commit
b48d210795
|
|
@ -34,7 +34,7 @@ from tasks.smoltalk import SmolTalk
|
||||||
# SFT Hyperparameters
|
# SFT Hyperparameters
|
||||||
run = "dummy" # wandb run name default ("dummy" is special - we won't log to wandb)
|
run = "dummy" # wandb run name default ("dummy" is special - we won't log to wandb)
|
||||||
# input model options
|
# input model options
|
||||||
source = "mid" # base|mid , which checkpoint to load the model from (base model or midtrained model)
|
source = "base" # base|mid , which checkpoint to load the model from (base model or midtrained model)
|
||||||
model_tag = None # model tag to load the model from (base model or midtrained model)
|
model_tag = None # model tag to load the model from (base model or midtrained model)
|
||||||
step = None # step to load the model from (base model or midtrained model)
|
step = None # step to load the model from (base model or midtrained model)
|
||||||
# compute/precision
|
# compute/precision
|
||||||
|
|
@ -208,18 +208,24 @@ for step in range(num_iterations):
|
||||||
break
|
break
|
||||||
|
|
||||||
# evaluate the gradient
|
# evaluate the gradient
|
||||||
|
total_loss_sum = torch.tensor(0.0, device=device) # sum of losses
|
||||||
num_tokens = torch.tensor(0, device=device) # the number of "active" tokens of supervision seen
|
num_tokens = torch.tensor(0, device=device) # the number of "active" tokens of supervision seen
|
||||||
for micro_step in range(grad_accum_steps):
|
for micro_step in range(grad_accum_steps):
|
||||||
train_inputs, train_targets = next(train_iter)
|
train_inputs, train_targets = next(train_iter)
|
||||||
with autocast_ctx:
|
with autocast_ctx:
|
||||||
loss = model(train_inputs, train_targets)
|
loss = model(train_inputs, train_targets, loss_reduction='sum')
|
||||||
train_loss = loss.detach() # for logging
|
total_loss_sum += loss.detach() # for logging
|
||||||
loss = loss / grad_accum_steps # each .backward() is a grad sum => normalize loss here
|
|
||||||
loss.backward() # accumulate the gradient
|
loss.backward() # accumulate the gradient
|
||||||
num_tokens += (train_targets >= 0).sum()
|
num_tokens += (train_targets >= 0).sum()
|
||||||
if ddp:
|
if ddp:
|
||||||
|
dist.all_reduce(total_loss_sum, op=dist.ReduceOp.SUM)
|
||||||
dist.all_reduce(num_tokens, op=dist.ReduceOp.SUM) # sum over ranks
|
dist.all_reduce(num_tokens, op=dist.ReduceOp.SUM) # sum over ranks
|
||||||
|
|
||||||
|
# Scale gradients by total number of tokens
|
||||||
|
for param in model.parameters():
|
||||||
|
if param.grad is not None:
|
||||||
|
param.grad.div_(num_tokens.item())
|
||||||
|
|
||||||
# learning rate scheduler
|
# learning rate scheduler
|
||||||
lrm = get_lr_multiplier(step)
|
lrm = get_lr_multiplier(step)
|
||||||
for opt in optimizers:
|
for opt in optimizers:
|
||||||
|
|
@ -232,8 +238,8 @@ for step in range(num_iterations):
|
||||||
model.zero_grad(set_to_none=True)
|
model.zero_grad(set_to_none=True)
|
||||||
|
|
||||||
# logging
|
# logging
|
||||||
train_loss_item = train_loss.item()
|
|
||||||
num_tokens_item = num_tokens.item()
|
num_tokens_item = num_tokens.item()
|
||||||
|
train_loss_item = total_loss_sum.item() / num_tokens_item
|
||||||
print0(f"Step {step:05d}/{num_iterations:05d} | Training loss: {train_loss_item:.6f}| lrm: {lrm:.6f}| num_tokens: {num_tokens_item:,}")
|
print0(f"Step {step:05d}/{num_iterations:05d} | Training loss: {train_loss_item:.6f}| lrm: {lrm:.6f}| num_tokens: {num_tokens_item:,}")
|
||||||
wandb_run.log({
|
wandb_run.log({
|
||||||
"step": step,
|
"step": step,
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue
Block a user