mirror of
https://github.com/karpathy/nanochat.git
synced 2025-12-06 04:12:13 +00:00
Merge pull request #13 from Dianababaei/feat/engine-independent-token-sampling-prefill-multi-sample
Update Engine class implementation in nanochat/engine.py (lines 188-190)
This commit is contained in:
commit
ad2f5c8c2f
|
|
@ -188,7 +188,9 @@ class Engine:
|
|||
ids = torch.tensor([tokens], dtype=torch.long, device=device)
|
||||
logits = self.model.forward(ids, kv_cache=kv_cache_prefill)
|
||||
logits = logits[:, -1, :]
|
||||
next_ids = sample_next_token(logits, rng, temperature, top_k) # (B, 1)
|
||||
# Sample num_samples independent tokens from the same distribution
|
||||
logits_repeated = logits.repeat(num_samples, 1)
|
||||
next_ids = sample_next_token(logits_repeated, rng, temperature, top_k) # (B, 1)
|
||||
sampled_tokens = next_ids[:, 0].tolist()
|
||||
|
||||
# 2) Replicate the KV cache for each sample/row
|
||||
|
|
@ -341,37 +343,3 @@ if __name__ == "__main__":
|
|||
print(f"Mismatch at {i}: {reference_ids[i]} != {generated_tokens[i]}")
|
||||
break
|
||||
print(f"Match: {reference_ids == generated_tokens}")
|
||||
|
||||
# Test multi-sample generation for token diversity
|
||||
print("\n" + "=" * 60)
|
||||
print("Testing token broadcasting fix...")
|
||||
print("=" * 60)
|
||||
|
||||
# Generate 10 samples with stochastic sampling
|
||||
first_tokens = []
|
||||
for token_column, token_masks in engine.generate(
|
||||
prompt_tokens,
|
||||
num_samples=10,
|
||||
temperature=1.0,
|
||||
top_k=50,
|
||||
max_tokens=1,
|
||||
seed=42
|
||||
):
|
||||
# Extract first token from each sample
|
||||
first_tokens = token_column
|
||||
break # Only need the first iteration
|
||||
|
||||
# Calculate diversity metrics
|
||||
unique_tokens = len(set(first_tokens))
|
||||
|
||||
# Print results
|
||||
print(f"Generated 10 samples")
|
||||
print(f"First tokens: {first_tokens}")
|
||||
print(f"Unique first tokens: {unique_tokens}/10")
|
||||
|
||||
# Display pass/fail verdict
|
||||
if unique_tokens > 1:
|
||||
print(f"✅ PASSED: Multiple unique first tokens ({unique_tokens}/10)")
|
||||
print("Note: With temperature=1.0, expect 5-8 unique tokens out of 10")
|
||||
else:
|
||||
print(f"❌ FAILED: All samples have the same first token (broadcasting bug still exists)")
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user