mirror of
https://github.com/karpathy/nanochat.git
synced 2025-12-07 12:52:16 +00:00
fix: inference_mode, csv metadata, typo, DDP comment
This commit is contained in:
parent
1ccbaf4416
commit
a3e1352f6b
|
|
@ -1,5 +1,5 @@
|
||||||
"""
|
"""
|
||||||
Evlauate the CORE metric for a given model.
|
Evaluate the CORE metric for a given model.
|
||||||
|
|
||||||
Run on a single GPU:
|
Run on a single GPU:
|
||||||
python base_eval.py
|
python base_eval.py
|
||||||
|
|
@ -17,7 +17,7 @@ import random
|
||||||
import yaml
|
import yaml
|
||||||
from contextlib import nullcontext
|
from contextlib import nullcontext
|
||||||
|
|
||||||
import pandas as pd
|
import csv
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from nanochat.common import compute_init, compute_cleanup, print0, get_base_dir, autodetect_device_type
|
from nanochat.common import compute_init, compute_cleanup, print0, get_base_dir, autodetect_device_type
|
||||||
|
|
@ -28,6 +28,7 @@ from nanochat.core_eval import evaluate_task
|
||||||
# -----------------------------------------------------------------------------
|
# -----------------------------------------------------------------------------
|
||||||
# nanoChat specific function dealing with I/O etc.
|
# nanoChat specific function dealing with I/O etc.
|
||||||
|
|
||||||
|
|
||||||
def evaluate_model(model, tokenizer, device, max_per_task=-1):
|
def evaluate_model(model, tokenizer, device, max_per_task=-1):
|
||||||
"""
|
"""
|
||||||
Evaluate a base model on the CORE benchmark.
|
Evaluate a base model on the CORE benchmark.
|
||||||
|
|
@ -43,7 +44,12 @@ def evaluate_model(model, tokenizer, device, max_per_task=-1):
|
||||||
with open(config_path, 'r') as f:
|
with open(config_path, 'r') as f:
|
||||||
config = yaml.safe_load(f)
|
config = yaml.safe_load(f)
|
||||||
tasks = config['icl_tasks']
|
tasks = config['icl_tasks']
|
||||||
eval_metadata = pd.read_csv(eval_meta_data)
|
|
||||||
|
eval_metadata = {}
|
||||||
|
with open(eval_meta_data, "r", newline="", encoding="utf-8") as f:
|
||||||
|
reader = csv.DictReader(f)
|
||||||
|
for row in reader:
|
||||||
|
eval_metadata[row["Eval Task"]] = row
|
||||||
|
|
||||||
# Evaluate each task
|
# Evaluate each task
|
||||||
results = {}
|
results = {}
|
||||||
|
|
@ -57,7 +63,8 @@ def evaluate_model(model, tokenizer, device, max_per_task=-1):
|
||||||
'num_fewshot': task['num_fewshot'][0],
|
'num_fewshot': task['num_fewshot'][0],
|
||||||
'continuation_delimiter': task.get('continuation_delimiter', ' ')
|
'continuation_delimiter': task.get('continuation_delimiter', ' ')
|
||||||
}
|
}
|
||||||
print0(f"Evaluating: {label} ({task_meta['num_fewshot']}-shot, type: {task_meta['task_type']})... ", end='')
|
print0(
|
||||||
|
f"Evaluating: {label} ({task_meta['num_fewshot']}-shot, type: {task_meta['task_type']})... ", end='')
|
||||||
|
|
||||||
# Load data for this task
|
# Load data for this task
|
||||||
data_path = os.path.join(data_base_path, task_meta['dataset_uri'])
|
data_path = os.path.join(data_base_path, task_meta['dataset_uri'])
|
||||||
|
|
@ -72,15 +79,24 @@ def evaluate_model(model, tokenizer, device, max_per_task=-1):
|
||||||
data = data[:max_per_task]
|
data = data[:max_per_task]
|
||||||
|
|
||||||
# run the evaluation for this task
|
# run the evaluation for this task
|
||||||
accuracy = evaluate_task(model, tokenizer, data, device, task_meta)
|
# eval should be grad-free for stability/perf
|
||||||
|
with torch.inference_mode():
|
||||||
|
accuracy = evaluate_task(model, tokenizer, data, device, task_meta)
|
||||||
|
|
||||||
results[label] = accuracy
|
results[label] = accuracy
|
||||||
row = eval_metadata[eval_metadata["Eval Task"] == label]
|
# row = eval_metadata[eval_metadata["Eval Task"] == label]
|
||||||
random_baseline = row["Random baseline"].values[0]
|
# random_baseline = row["Random baseline"].values[0]
|
||||||
centered_result = (accuracy - 0.01 * random_baseline) / (1.0 - 0.01 * random_baseline)
|
row = eval_meta_data.get(label)
|
||||||
|
if row is None or "Random baseline" not in row:
|
||||||
|
raise KeyError(
|
||||||
|
f"Missing 'Random baseline' for task '{label}' in {eval_meta_data}")
|
||||||
|
random_baseline = float(row["Random baseline"])
|
||||||
|
centered_result = (accuracy - 0.01 * random_baseline) / \
|
||||||
|
(1.0 - 0.01 * random_baseline)
|
||||||
centered_results[label] = centered_result
|
centered_results[label] = centered_result
|
||||||
end_time = time.time()
|
end_time = time.time()
|
||||||
print0(f"accuracy: {accuracy:.4f} | centered: {centered_result:.4f} | time: {end_time - start_time:.2f}s")
|
print0(
|
||||||
|
f"accuracy: {accuracy:.4f} | centered: {centered_result:.4f} | time: {end_time - start_time:.2f}s")
|
||||||
|
|
||||||
core_metric = sum(centered_results.values()) / len(centered_results)
|
core_metric = sum(centered_results.values()) / len(centered_results)
|
||||||
out = {
|
out = {
|
||||||
|
|
@ -93,8 +109,10 @@ def evaluate_model(model, tokenizer, device, max_per_task=-1):
|
||||||
# -----------------------------------------------------------------------------
|
# -----------------------------------------------------------------------------
|
||||||
# HuggingFace loading utilities and light wrappers for a model
|
# HuggingFace loading utilities and light wrappers for a model
|
||||||
|
|
||||||
|
|
||||||
class ModelWrapper:
|
class ModelWrapper:
|
||||||
"""Lightweight wrapper for a HuggingFace model"""
|
"""Lightweight wrapper for a HuggingFace model"""
|
||||||
|
|
||||||
def __init__(self, model, max_seq_len=None):
|
def __init__(self, model, max_seq_len=None):
|
||||||
self.model = model
|
self.model = model
|
||||||
self.max_seq_len = max_seq_len
|
self.max_seq_len = max_seq_len
|
||||||
|
|
@ -104,6 +122,7 @@ class ModelWrapper:
|
||||||
logits = outputs.logits
|
logits = outputs.logits
|
||||||
return logits
|
return logits
|
||||||
|
|
||||||
|
|
||||||
def load_hf_model(hf_path: str, device):
|
def load_hf_model(hf_path: str, device):
|
||||||
print0(f"Loading model from: {hf_path}")
|
print0(f"Loading model from: {hf_path}")
|
||||||
# Load the model
|
# Load the model
|
||||||
|
|
@ -118,17 +137,23 @@ def load_hf_model(hf_path: str, device):
|
||||||
return model, tokenizer
|
return model, tokenizer
|
||||||
|
|
||||||
# -----------------------------------------------------------------------------
|
# -----------------------------------------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
import argparse
|
import argparse
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument('--hf-path', type=str, default=None, help='HuggingFace model path to evaluate')
|
parser.add_argument('--hf-path', type=str, default=None,
|
||||||
parser.add_argument('--max-per-task', type=int, default=-1, help='Max examples per task to evaluate (-1 = disable)')
|
help='HuggingFace model path to evaluate')
|
||||||
|
parser.add_argument('--max-per-task', type=int, default=-1,
|
||||||
|
help='Max examples per task to evaluate (-1 = disable)')
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
# distributed / precision setup
|
# distributed / precision setup
|
||||||
device_type = autodetect_device_type()
|
device_type = autodetect_device_type()
|
||||||
ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init(device_type)
|
ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init(
|
||||||
autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=torch.bfloat16) if device_type == "cuda" else nullcontext()
|
device_type)
|
||||||
|
autocast_ctx = torch.amp.autocast(
|
||||||
|
device_type=device_type, dtype=torch.bfloat16) if device_type == "cuda" else nullcontext()
|
||||||
|
|
||||||
# Load model and tokenizer from command line or from file system
|
# Load model and tokenizer from command line or from file system
|
||||||
if args.hf_path is not None:
|
if args.hf_path is not None:
|
||||||
|
|
@ -136,24 +161,27 @@ def main():
|
||||||
hf_path = args.hf_path
|
hf_path = args.hf_path
|
||||||
print0(f"Loading huggingface model from: {hf_path}")
|
print0(f"Loading huggingface model from: {hf_path}")
|
||||||
model, tokenizer = load_hf_model(hf_path, device)
|
model, tokenizer = load_hf_model(hf_path, device)
|
||||||
model_name = hf_path # just for logging
|
model_name = hf_path # just for logging
|
||||||
model_slug = hf_path.replace("/", "-") # for the output csv file
|
model_slug = hf_path.replace("/", "-") # for the output csv file
|
||||||
else:
|
else:
|
||||||
# load a local model from the file system
|
# load a local model from the file system
|
||||||
model, tokenizer, meta = load_model("base", device, phase="eval")
|
model, tokenizer, meta = load_model("base", device, phase="eval")
|
||||||
model_name = f"base_model (step {meta['step']})" # just for logging
|
model_name = f"base_model (step {meta['step']})" # just for logging
|
||||||
model_slug = f"base_model_{meta['step']:06d}" # for the output csv file
|
# for the output csv file
|
||||||
|
model_slug = f"base_model_{meta['step']:06d}"
|
||||||
|
|
||||||
# Evaluate the model
|
# Evaluate the model
|
||||||
with autocast_ctx:
|
with autocast_ctx:
|
||||||
out = evaluate_model(model, tokenizer, device, max_per_task=args.max_per_task)
|
out = evaluate_model(model, tokenizer, device,
|
||||||
|
max_per_task=args.max_per_task)
|
||||||
|
|
||||||
# Write out the results to a csv file
|
# Write out the results to a csv file
|
||||||
core_metric = None
|
core_metric = None
|
||||||
centered_results = {}
|
centered_results = {}
|
||||||
if ddp_rank == 0:
|
if ddp_rank == 0:
|
||||||
base_dir = get_base_dir()
|
base_dir = get_base_dir()
|
||||||
output_csv_path = os.path.join(base_dir, "base_eval", f"{model_slug}.csv")
|
output_csv_path = os.path.join(
|
||||||
|
base_dir, "base_eval", f"{model_slug}.csv")
|
||||||
os.makedirs(os.path.dirname(output_csv_path), exist_ok=True)
|
os.makedirs(os.path.dirname(output_csv_path), exist_ok=True)
|
||||||
results = out["results"]
|
results = out["results"]
|
||||||
centered_results = out["centered_results"]
|
centered_results = out["centered_results"]
|
||||||
|
|
@ -161,7 +189,8 @@ def main():
|
||||||
with open(output_csv_path, 'w') as f:
|
with open(output_csv_path, 'w') as f:
|
||||||
f.write(f"{'Task':<35}, {'Accuracy':<10}, {'Centered':<10}\n")
|
f.write(f"{'Task':<35}, {'Accuracy':<10}, {'Centered':<10}\n")
|
||||||
for label in results:
|
for label in results:
|
||||||
f.write(f"{label:<35}, {results[label]:<10.6f}, {centered_results[label]:<10.6f}\n")
|
f.write(
|
||||||
|
f"{label:<35}, {results[label]:<10.6f}, {centered_results[label]:<10.6f}\n")
|
||||||
f.write(f"{'CORE':<35}, {'':<10}, {core_metric:<10.6f}\n")
|
f.write(f"{'CORE':<35}, {'':<10}, {core_metric:<10.6f}\n")
|
||||||
# Print the content of the csv file to console too
|
# Print the content of the csv file to console too
|
||||||
print0("="*80)
|
print0("="*80)
|
||||||
|
|
@ -177,10 +206,11 @@ def main():
|
||||||
"Model": model_name,
|
"Model": model_name,
|
||||||
"CORE metric": core_metric,
|
"CORE metric": core_metric,
|
||||||
},
|
},
|
||||||
centered_results, # the full table
|
centered_results, # the full table
|
||||||
])
|
])
|
||||||
|
|
||||||
compute_cleanup()
|
compute_cleanup()
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue
Block a user