Merge branch 'master' into fix/typo

This commit is contained in:
svlandeg 2025-11-02 13:41:13 +01:00
commit 52e85aaf80
10 changed files with 52 additions and 44 deletions

View File

@ -113,7 +113,7 @@ files-to-prompt . -e py -e md -e rs -e html -e toml -e sh --ignore "*target*" --
This includes all py, rs, html, toml, sh files, excludes the `rustbpe/target` folder, and chooses the cxml output format. Everything is written to the `packaged.txt` file, which atm measures ~330KB (i.e. well below ~100K tokens for a state of the art LLM), and ~8K lines of code in 45 files.
Alternatively, I recommend using [DeepWiki](https://deepwiki.com/) from Devin/Cognition to ask questions of this repo. In the URL of this repo, simply change github.com to deepwiki.com, and you're off.
Alternatively, I recommend using [DeepWiki](https://deepwiki.com/karpathy/nanochat) from Devin/Cognition to ask questions of this repo. In the URL of this repo, simply change github.com to deepwiki.com, and you're off.
## Tests

View File

@ -22,13 +22,6 @@ fi
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y
source "$HOME/.cargo/env"
uv run maturin develop --release --manifest-path rustbpe/Cargo.toml
EVAL_BUNDLE_URL=https://karpathy-public.s3.us-west-2.amazonaws.com/eval_bundle.zip
if [ ! -d "$NANOCHAT_BASE_DIR/eval_bundle" ]; then
curl -L -o eval_bundle.zip $EVAL_BUNDLE_URL
unzip -q eval_bundle.zip
rm eval_bundle.zip
mv eval_bundle $NANOCHAT_BASE_DIR
fi
# wipe the report
python -m nanochat.report reset

View File

@ -58,7 +58,7 @@ def get_base_dir():
os.makedirs(nanochat_dir, exist_ok=True)
return nanochat_dir
def download_file_with_lock(url, filename):
def download_file_with_lock(url, filename, postprocess_fn=None):
"""
Downloads a file from a URL to a local path in the base directory.
Uses a lock file to prevent concurrent downloads among multiple ranks.
@ -76,18 +76,24 @@ def download_file_with_lock(url, filename):
# All other ranks block until it is released
fcntl.flock(lock_file.fileno(), fcntl.LOCK_EX)
# Recheck after acquiring lock (another process may have downloaded it)
if os.path.exists(file_path):
return file_path
# Download the content as bytes
print(f"Downloading {url}...")
with urllib.request.urlopen(url) as response:
content = response.read().decode('utf-8')
content = response.read() # bytes
with open(file_path, 'w') as f:
# Write to local file
with open(file_path, 'wb') as f:
f.write(content)
print(f"Downloaded to {file_path}")
# Run the postprocess function if provided
if postprocess_fn is not None:
postprocess_fn(file_path)
# Clean up the lock file after the lock is released
try:
os.remove(lock_path)

View File

@ -37,7 +37,7 @@ def eval_with_timeout(formula, max_time=3):
with timeout(max_time, formula):
with warnings.catch_warnings():
warnings.simplefilter("ignore", SyntaxWarning)
return eval(formula)
return eval(formula, {"__builtins__": {}}, {})
except Exception as e:
signal.alarm(0)
# print(f"Warning: Failed to eval {formula}, exception: {e}") # it's ok ignore wrong calculator usage
@ -109,7 +109,7 @@ class KVCache:
for ix, (dim1, dim2) in enumerate(zip(self.kv_shape, other.kv_shape)):
if ix in [0, 1, 3, 5]:
# num_layers, batch_size, num_heads, head_dim must match
assert dim1 == dim2, f"Batch dim mismatch: {dim1} != {dim2}"
assert dim1 == dim2, f"Dim {ix} mismatch: {dim1} != {dim2}"
elif ix == 2:
# batch_size can be expanded
assert dim1 == dim2 or dim2 == 1, f"Batch dim mismatch: {dim1} != {dim2}"

View File

@ -8,7 +8,6 @@ dependencies = [
"datasets>=4.0.0",
"fastapi>=0.117.1",
"files-to-prompt>=0.6",
"numpy==1.26.4",
"psutil>=7.1.0",
"regex>=2025.9.1",
"setuptools>=80.9.0",

View File

@ -19,13 +19,6 @@ python -m nanochat.report reset
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y
source "$HOME/.cargo/env"
uv run maturin develop --release --manifest-path rustbpe/Cargo.toml
EVAL_BUNDLE_URL=https://karpathy-public.s3.us-west-2.amazonaws.com/eval_bundle.zip
if [ ! -d "$NANOCHAT_BASE_DIR/eval_bundle" ]; then
curl -L -o eval_bundle.zip $EVAL_BUNDLE_URL
unzip -q eval_bundle.zip
rm eval_bundle.zip
mv eval_bundle $NANOCHAT_BASE_DIR
fi
curl -L -o $NANOCHAT_BASE_DIR/identity_conversations.jsonl https://karpathy-public.s3.us-west-2.amazonaws.com/identity_conversations.jsonl
# train tokenizer on ~4B characters and kick off download of the rest for pretraining

View File

@ -2,48 +2,75 @@
Evaluate the CORE metric for a given model.
Run on a single GPU:
python base_eval.py
python -m scripts.base_eval
Run with torchrun on e.g. 8 GPUs:
torchrun --nproc_per_node=8 base_eval.py
torchrun --nproc_per_node=8 -m scripts.base_eval
The script will print the CORE metric to the console.
"""
import os
import sys
import csv
import time
import json
import random
import yaml
import shutil
import random
import zipfile
import tempfile
from contextlib import nullcontext
import pandas as pd
import torch
from nanochat.common import compute_init, compute_cleanup, print0, get_base_dir, autodetect_device_type
from nanochat.common import compute_init, compute_cleanup, print0, get_base_dir, autodetect_device_type, download_file_with_lock
from nanochat.tokenizer import HuggingFaceTokenizer
from nanochat.checkpoint_manager import load_model
from nanochat.core_eval import evaluate_task
# -----------------------------------------------------------------------------
# nanoChat specific function dealing with I/O etc.
# nanochat specific function dealing with I/O etc.
# ~162MB of data needed to evaluate the CORE metric
EVAL_BUNDLE_URL = "https://karpathy-public.s3.us-west-2.amazonaws.com/eval_bundle.zip"
def place_eval_bundle(file_path):
# here file_path is the path to the eval_bundle.zip file
# we need to unzip it and place it in the base directory
base_dir = get_base_dir()
eval_bundle_dir = os.path.join(base_dir, "eval_bundle")
with tempfile.TemporaryDirectory() as tmpdir:
with zipfile.ZipFile(file_path, 'r') as zip_ref:
zip_ref.extractall(tmpdir)
extracted_bundle_dir = os.path.join(tmpdir, "eval_bundle")
shutil.move(extracted_bundle_dir, eval_bundle_dir)
print0(f"Placed eval_bundle directory at {eval_bundle_dir}")
def evaluate_model(model, tokenizer, device, max_per_task=-1):
"""
Evaluate a base model on the CORE benchmark.
- max_per_task: crop the data to this many examples per task for testing (-1 = disable)
TODO: clean up this function, delete the need for all the files, for pandas dependency, etc.
"""
# Load config and task metadata
base_dir = get_base_dir()
eval_bundle_dir = os.path.join(base_dir, "eval_bundle")
# Download the eval bundle to disk (and unzip if needed)
if not os.path.exists(eval_bundle_dir):
download_file_with_lock(EVAL_BUNDLE_URL, "eval_bundle.zip", postprocess_fn=place_eval_bundle)
config_path = os.path.join(eval_bundle_dir, "core.yaml")
data_base_path = os.path.join(eval_bundle_dir, "eval_data")
eval_meta_data = os.path.join(eval_bundle_dir, "eval_meta_data.csv")
with open(config_path, 'r') as f:
config = yaml.safe_load(f)
tasks = config['icl_tasks']
eval_metadata = pd.read_csv(eval_meta_data)
# Load random baseline values from eval metadata
random_baselines = {}
with open(eval_meta_data, 'r', encoding='utf-8') as f:
reader = csv.DictReader(f)
for row in reader:
task_name = row['Eval Task']
random_baseline = row['Random baseline']
random_baselines[task_name] = float(random_baseline)
# Evaluate each task
results = {}
@ -75,8 +102,7 @@ def evaluate_model(model, tokenizer, device, max_per_task=-1):
accuracy = evaluate_task(model, tokenizer, data, device, task_meta)
results[label] = accuracy
row = eval_metadata[eval_metadata["Eval Task"] == label]
random_baseline = row["Random baseline"].values[0]
random_baseline = random_baselines[label]
centered_result = (accuracy - 0.01 * random_baseline) / (1.0 - 0.01 * random_baseline)
centered_results[label] = centered_result
end_time = time.time()

View File

@ -294,7 +294,7 @@ for step in range(num_iterations + 1):
smooth_train_loss = ema_beta * smooth_train_loss + (1 - ema_beta) * train_loss.item() # EMA the training loss
debiased_smooth_loss = smooth_train_loss / (1 - ema_beta**(step + 1)) # debias the EMA
pct_done = 100 * step / num_iterations
tok_per_sec = int(world_tokens_per_fwdbwd / dt)
tok_per_sec = int(total_batch_size / dt)
flops_per_sec = num_flops_per_token * total_batch_size / dt
promised_flops_per_sec_h100 = 989e12 * ddp_world_size # bfloat16 H100 SXM and without 2:4 sparsity
mfu = 100 * flops_per_sec / promised_flops_per_sec_h100 # in %

View File

@ -268,7 +268,7 @@ while True:
smooth_train_loss = ema_beta * smooth_train_loss + (1 - ema_beta) * train_loss.item() # EMA the training loss
debiased_smooth_loss = smooth_train_loss / (1 - ema_beta**(step + 1)) # debias the EMA
pct_done = 100 * progress
tok_per_sec = int(world_tokens_per_fwdbwd / dt)
tok_per_sec = int(total_batch_size / dt)
flops_per_sec = num_flops_per_token * total_batch_size / dt
promised_flops_per_sec_h100 = 989e12 * ddp_world_size # bfloat16 H100 SXM and without 2:4 sparsity
mfu = 100 * flops_per_sec / promised_flops_per_sec_h100 # in %

View File

@ -73,15 +73,6 @@ python -m scripts.tok_eval
# -----------------------------------------------------------------------------
# Base model (pretraining)
# Download the eval_bundle from s3 to evaluate CORE metric during training (~162MB)
EVAL_BUNDLE_URL=https://karpathy-public.s3.us-west-2.amazonaws.com/eval_bundle.zip
if [ ! -d "$NANOCHAT_BASE_DIR/eval_bundle" ]; then
curl -L -o eval_bundle.zip $EVAL_BUNDLE_URL
unzip -q eval_bundle.zip
rm eval_bundle.zip
mv eval_bundle $NANOCHAT_BASE_DIR
fi
# The d20 model is 561M parameters.
# Chinchilla says #tokens = 20X #params, so we need 561e6 * 20 = 11.2B tokens.
# Assume our tokenizer is 4.8 chars/token, this is 11.2B * 4.8 ~= 54B chars.