This commit is contained in:
Alex Kim 2025-10-15 10:14:22 -07:00 committed by GitHub
commit 4113f75864
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 135 additions and 1 deletions

71
cloud/README.md Normal file
View File

@ -0,0 +1,71 @@
# Running nanochat on the Cloud with SkyPilot
This directory contains [SkyPilot](https://skypilot.readthedocs.io/) configurations for easily launching nanochat on major cloud providers (AWS, GCP, Azure), GPU clouds (Lambda, Nebius, RunPod, etc.), and Kubernetes clusters.
## Prerequisites
1. Install SkyPilot and configure it with your cloud provider(s) or Kubernetes cluster:
- Follow the [SkyPilot installation guide](https://docs.skypilot.co/en/latest/getting-started/installation.html)
- Configure your cloud credentials (AWS, GCP, Azure, Lambda, Nebius, etc.) OR
- Configure Kubernetes access via [SkyPilot's Kubernetes support](https://docs.skypilot.co/en/latest/reference/kubernetes/index.html)
## Training: Running the Speedrun Pipeline
Launch the speedrun training pipeline on any cloud provider with a single command:
```bash
sky launch -c nanochat-speedrun cloud/speedrun.sky.yaml --infra <k8s|aws|gcp|nebius|lambda|etc>
```
This will:
- Provision an 8xH100 GPU node
- Set up the environment
- Run the complete training pipeline via `speedrun.sh`
- Save trained model checkpoints to `s3://nanochat-data` (change this to your own bucket)
- Complete in approximately 4 hours (~$100 on most providers)
### Monitoring Training Progress
After launching, you can SSH into the cluster and monitor progress:
```bash
# SSH into the cluster
ssh nanochat-speedrun
# View the speedrun logs
sky logs nanochat-speedrun
```
## Serving: Deploy Your Trained Model
Once training is complete, serve your trained model with the web UI:
```bash
sky launch -c nanochat-serve cloud/serve.sky.yaml --infra <k8s|aws|gcp|nebius|lambda|etc>
```
This will:
- Provision a 1xH100 GPU node (much cheaper then an 8xH100 VM used for training)
- Load model weights from the same `s3://nanochat-data` bucket used during training
- Serve the web chat interface on port 8000
- Cost is ~$2-3/hour on most providers
### Accessing the Web UI
Get the endpoint URL to access the chat interface:
```bash
sky status --endpoint 8000 nanochat-serve
```
Open the displayed URL in your browser to chat with your trained model!
<img width="940" height="1050" alt="image" src="https://github.com/user-attachments/assets/ee8b1536-1faa-435a-ab22-4db2c8cf9220" />
### Shared Storage
Both training and serving tasks use [SkyPilot's bucket mounting functionality](https://docs.skypilot.co/en/latest/reference/storage.html) to preserve and share model weights. This allows you to:
- Train once, serve multiple times without re-downloading weights
- Share trained models across different serving instances

35
cloud/serve.sky.yaml Normal file
View File

@ -0,0 +1,35 @@
# Serve a trained nanochat model with the web UI
#
# Launch:
# sky launch -c nanochat-serve cloud/serve.sky.yaml --infra <aws|gcp|nebius|lambda|etc>
#
# Access the web UI:
# sky status --endpoint 8000 nanochat-serve
#
# Then open the URL in your browser to chat with your model!
name: nanochat-serve
resources:
accelerators: H100:1 # Single GPU sufficient for inference
ports: 8000 # Expose port 8000 for the web UI
disk_size: 100
file_mounts:
/tmp/nanochat:
source: s3://nanochat-data
workdir: .
setup: |
uv sync
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y
source "$HOME/.cargo/env"
source .venv/bin/activate
unset CONDA_PREFIX
uv run maturin develop --release --manifest-path rustbpe/Cargo.toml
run: |
export NANOCHAT_BASE_DIR=/tmp/nanochat
source .venv/bin/activate
python -m scripts.chat_web --host 0.0.0.0 --port 8000

28
cloud/speedrun.sky.yaml Normal file
View File

@ -0,0 +1,28 @@
# Run the full nanochat training speedrun
#
# Launch:
# sky launch -c nanochat-speedrun cloud/speedrun.sky.yaml --infra <aws|gcp|nebius|lambda|etc>
#
# Monitor progress:
# sky logs nanochat-speedrun
#
# This will train the model using 8x H100 GPUs and save results to S3.
name: nanochat-speedrun
resources:
accelerators: H100:8
disk_size: 512
file_mounts:
/tmp/nanochat:
source: s3://nanochat-data
workdir: .
setup: |
sudo apt-get install -y unzip
run: |
export NANOCHAT_BASE_DIR=/tmp/nanochat
bash speedrun.sh

View File

@ -12,7 +12,7 @@
# Default intermediate artifacts directory is in ~/.cache/nanochat
export OMP_NUM_THREADS=1
export NANOCHAT_BASE_DIR="$HOME/.cache/nanochat"
NANOCHAT_BASE_DIR="${NANOCHAT_BASE_DIR:-$HOME/.cache/nanochat}"
mkdir -p $NANOCHAT_BASE_DIR
# -----------------------------------------------------------------------------