diff --git a/speedrun.sh b/speedrun.sh new file mode 100644 index 0000000..45277f4 --- /dev/null +++ b/speedrun.sh @@ -0,0 +1,143 @@ +#!/bin/bash + +# This script is the "Best ChatGPT clone that $100 can buy", +# It is designed to run in ~4 hours on 8XH100 node at $3/GPU/hour. + +# 1) Example launch (simplest): +# bash speedrun.sh +# 2) Example launch in a screen session (because the run takes ~4 hours): +# screen -L -Logfile speedrun.log -S speedrun bash speedrun.sh +# 3) Example launch with wandb logging, but see below for setting up wandb first: +# WANDB_RUN=speedrun screen -L -Logfile speedrun.log -S speedrun bash speedrun.sh +set -x + +DATA_NAME=smollm +DATA_DIR=/lustre/fsw/portfolios/nvr/users/sdiao/nanochat/data/$DATA_NAME + +# Default intermediate artifacts directory is in ~/.cache/nanochat +export OMP_NUM_THREADS=1 +export NANOCHAT_BASE_DIR="$HOME/.cache/nanochat" +mkdir -p $NANOCHAT_BASE_DIR + +# ----------------------------------------------------------------------------- +# Python venv setup with uv + +# install uv (if not already installed) +command -v uv &> /dev/null || curl -LsSf https://astral.sh/uv/install.sh | sh +# create a .venv local virtual environment (if it doesn't exist) +[ -d ".venv" ] || uv venv +# install the repo dependencies +uv sync --extra gpu +# activate venv so that `python` uses the project's venv instead of system python +source .venv/bin/activate + +# ----------------------------------------------------------------------------- +# wandb setup +# If you wish to use wandb for logging (it's nice!, recommended). +# 1) Make sure to first log in to wandb, e.g. run: +# `wandb login` +# 2) Set the WANDB_RUN environment variable when running this script, e.g.: +# `WANDB_RUN=d26 bash speedrun.sh` +# if [ -z "$WANDB_RUN" ]; then +# # by default use "dummy" : it's handled as a special case, skips logging to wandb +# WANDB_RUN=dummy +# fi +export WANDB_API_KEY="ec7a9c0701d404122e4fc5c7c7518ed17f5b03ca" +export WANDB_RUN=fineweb_d20_test + +# ----------------------------------------------------------------------------- +# During the course of the run, we will be writing markdown reports to the report/ +# directory in the base dir. This command clears it out and writes a header section +# with a bunch of system info and a timestamp that marks the start of the run. +python -m nanochat.report reset --exp_name=$WANDB_RUN + +# ----------------------------------------------------------------------------- +# Tokenizer + +# Install Rust / Cargo +curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y +source "$HOME/.cargo/env" + +# Build the rustbpe Tokenizer +uv run maturin develop --release --manifest-path rustbpe/Cargo.toml + +# Download the first ~2B characters of pretraining dataset +# look at dev/repackage_data_reference.py for details on how this data was prepared +# each data shard is ~250M chars +# so we download 2e9 / 250e6 = 8 data shards at this point +# each shard is ~100MB of text (compressed), so this is about ~800MB of data on disk +python -m nanochat.dataset -n 8 +# Immediately also kick off downloading more shards in the background while tokenizer trains +# See comment below for why 240 is the right number here +python -m nanochat.dataset -n 240 & +DATASET_DOWNLOAD_PID=$! +# train the tokenizer with vocab size 2**16 = 65536 on ~2B characters of data +python -m scripts.tok_train --max_chars=2000000000 +# evaluate the tokenizer (report compression ratio etc.) +python -m scripts.tok_eval + +# ----------------------------------------------------------------------------- +# Base model (pretraining) + +# Download the eval_bundle from s3 to evaluate CORE metric during training (~162MB) +EVAL_BUNDLE_URL=https://karpathy-public.s3.us-west-2.amazonaws.com/eval_bundle.zip +if [ ! -d "$NANOCHAT_BASE_DIR/eval_bundle" ]; then + curl -L -o eval_bundle.zip $EVAL_BUNDLE_URL + unzip -q eval_bundle.zip + rm eval_bundle.zip + mv eval_bundle $NANOCHAT_BASE_DIR +fi + +# The d20 model is 561M parameters. +# Chinchilla says #tokens = 20X #params, so we need 561e6 * 20 = 11.2B tokens. +# Assume our tokenizer is 4.8 chars/token, this is 11.2B * 4.8 ~= 54B chars. +# At 250M chars/shard, this is 54B / 250M ~= 216 shards needed for pretraining. +# Round up to 240 for safety. At ~100MB/shard, this downloads ~24GB of data to disk. +# (The total number of shards available in the entire dataset is 1822.) +echo "Waiting for dataset download to complete..." +wait $DATASET_DOWNLOAD_PID + +# pretrain the d20 model +torchrun --standalone --nproc_per_node=8 -m scripts.base_train -- --depth=20 --run=$WANDB_RUN --data_dir=$DATA_DIR +# evaluate the model on a larger chunk of train/val data and draw some samples +torchrun --standalone --nproc_per_node=8 -m scripts.base_loss --data_dir=$DATA_DIR +# evaluate the model on CORE tasks +torchrun --standalone --nproc_per_node=8 -m scripts.base_eval + +# ----------------------------------------------------------------------------- +# Midtraining (teach the model conversation special tokens, tool use, multiple choice) + +# download 2.3MB of synthetic identity conversations to impart a personality to nanochat +# see dev/gen_sft_data.py for details on how this data was prepared and to get a sense of how you can easily tune it +curl -L -o $NANOCHAT_BASE_DIR/identity_conversations.jsonl https://karpathy-public.s3.us-west-2.amazonaws.com/identity_conversations.jsonl + +# run midtraining and eval the model +torchrun --standalone --nproc_per_node=8 -m scripts.mid_train -- --run=$WANDB_RUN +torchrun --standalone --nproc_per_node=8 -m scripts.chat_eval -- -i mid + +# ----------------------------------------------------------------------------- +# Supervised Finetuning (domain adaptation to each sequence all by itself per row) + +# train sft and re-eval right away (should see a small bump) +torchrun --standalone --nproc_per_node=8 -m scripts.chat_sft -- --run=$WANDB_RUN +torchrun --standalone --nproc_per_node=8 -m scripts.chat_eval -- -i sft + +# chat with the model over CLI! Leave out the -p to chat interactively +# python -m scripts.chat_cli -p "Why is the sky blue?" + +# even better, chat with your model over a pretty WebUI ChatGPT style +# python -m scripts.chat_web + +# ----------------------------------------------------------------------------- +# Reinforcement Learning. Optional, and currently only on GSM8K +# (optional) + +# run reinforcement learning +# torchrun --standalone --nproc_per_node=8 -m scripts.chat_rl -- --run=$WANDB_RUN +# eval the RL model only on GSM8K +# torchrun --standalone --nproc_per_node=8 -m scripts.chat_eval -- -i rl -a GSM8K + +# ----------------------------------------------------------------------------- +# Generate the full report by putting together all the sections +# report.md is the output and will be copied to current directory for convenience +python -m nanochat.report generate --exp_name=$WANDB_RUN