add detection of device to report more correct mfu for bf16

This commit is contained in:
Andrej Karpathy 2026-01-17 03:16:12 +00:00
parent 77a46902e4
commit 2955650327
2 changed files with 57 additions and 3 deletions

View File

@ -200,3 +200,52 @@ class DummyWandb:
pass
def finish(self):
pass
# hardcoded BF16 peak flops for NVIDIA A100, H100, H200, B200 GPU and AMD MI250, MI300X, MI325X, MI355X and Intel PVC
# inspired by torchtitan: https://github.com/pytorch/torchtitan/blob/main/torchtitan/tools/utils.py
def get_peak_flops(device_name: str) -> float:
if "A100" in device_name:
# data from https://www.nvidia.com/en-us/data-center/a100/
return 312e12
elif "H100" in device_name:
# data from https://www.nvidia.com/en-us/data-center/h100/
# NOTE: Specifications are one-half lower without sparsity.
if "NVL" in device_name:
return 835e12
elif "PCIe" in device_name:
return 756e12
else: # for H100 SXM and other variants
return 989e12
elif "H200" in device_name:
# data from https://www.nvidia.com/en-us/data-center/h200/
return 989e12
elif "B200" in device_name:
# data from https://nvdam.widen.net/s/wwnsxrhm2w/blackwell-datasheet-3384703
return 2.25e15
elif "MI355X" in device_name:
# MI355X data from https://www.amd.com/en/products/accelerators/instinct/mi350/mi355x.html
return 2500e12
elif "MI300X" in device_name or "MI325X" in device_name:
# MI300X data from https://www.amd.com/en/products/accelerators/instinct/mi300/mi300x.html
# MI325X data from https://www.amd.com/en/products/accelerators/instinct/mi300/mi325x.html
return 1300e12
elif "MI250X" in device_name:
# data from https://www.amd.com/en/products/accelerators/instinct/mi200/mi250x.html (per GCD)
return 191.5e12
elif "Data Center GPU Max 1550" in device_name:
# Also known as Ponte Vecchio (PVC).
# data from https://www.intel.com/content/www/us/en/docs/oneapi/optimization-guide-gpu/2025-0/intel-xe-gpu-architecture.html
# Dot Product Accumulate Systolic (DPAS):
# - Freq: 1300MHz
# - #ops: 512
# Full EU mode (i.e. 512 max compute units): 340.8 TFLOPS (BF16)
# Standard EU mode (i.e. 448 max compute units): 298.2 TFLOPS (BF16)
max_comp_units = torch.xpu.get_device_properties("xpu").max_compute_units
return 512 * max_comp_units * 1300 * 10**6
elif "l40s" in device_name:
# data from: "https://resources.nvidia.com/en-us-l40s/l40s-datasheet-28413"
return 362e12
else: # for other GPU types, assume A100
logger.warning(f"Peak flops undefined for: {device_name}, fallback to A100")
return 312e12

View File

@ -22,7 +22,7 @@ import torch
from nanochat.gpt import GPT, GPTConfig
from nanochat.dataloader import tokenizing_distributed_data_loader_bos_bestfit, tokenizing_distributed_data_loader_with_state_bos_bestfit
from nanochat.common import compute_init, compute_cleanup, print0, DummyWandb, print_banner, get_base_dir, autodetect_device_type
from nanochat.common import compute_init, compute_cleanup, print0, DummyWandb, print_banner, get_base_dir, autodetect_device_type, get_peak_flops
from nanochat.tokenizer import get_tokenizer, get_token_bytes
from nanochat.checkpoint_manager import save_checkpoint, load_checkpoint
from nanochat.loss_eval import evaluate_bpb
@ -82,6 +82,12 @@ master_process = ddp_rank == 0 # this process will do logging, checkpointing etc
autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=torch.bfloat16) if device_type == "cuda" else nullcontext()
synchronize = torch.cuda.synchronize if device_type == "cuda" else lambda: None
get_max_memory = torch.cuda.max_memory_allocated if device_type == "cuda" else lambda: 0
if device_type == "cuda":
gpu_device_name = torch.cuda.get_device_name(0)
gpu_peak_flops = get_peak_flops(gpu_device_name)
print0(f"GPU: {gpu_device_name} | Peak FLOPS (BF16): {gpu_peak_flops:.2e}")
else:
gpu_peak_flops = float('inf') # MFU not meaningful for CPU/MPS
# wandb logging init
use_dummy_wandb = args.run == "dummy" or not master_process
@ -395,8 +401,7 @@ while True:
pct_done = 100 * step / num_iterations
tok_per_sec = int(args.total_batch_size / dt)
flops_per_sec = num_flops_per_token * args.total_batch_size / dt
promised_flops_per_sec_h100 = 989e12 * ddp_world_size # bfloat16 H100 SXM and without 2:4 sparsity
mfu = 100 * flops_per_sec / promised_flops_per_sec_h100 # in %
mfu = 100 * flops_per_sec / (gpu_peak_flops * ddp_world_size)
if step > 10:
total_training_time += dt # only count the time after the first 10 steps
# Calculate ETA based on average time per step (excluding first 10 steps)