mirror of
https://github.com/karpathy/nanochat.git
synced 2025-12-06 04:12:13 +00:00
allow multiple GPUs to do inference in a data parallel way
This commit is contained in:
parent
190d9515d0
commit
01fb290f53
|
|
@ -327,7 +327,6 @@
|
|||
},
|
||||
body: JSON.stringify({
|
||||
messages: messages,
|
||||
stream: true,
|
||||
temperature: 0.8,
|
||||
max_tokens: 512
|
||||
}),
|
||||
|
|
|
|||
|
|
@ -1,26 +1,46 @@
|
|||
#!/usr/bin/env python3
|
||||
"""
|
||||
Unified web chat server - serves both UI and API from a single FastAPI instance.
|
||||
Run with: python web_chat.py
|
||||
Then open http://localhost:8000 in your browser.
|
||||
|
||||
Uses data parallelism to distribute requests across multiple GPUs. Each GPU loads
|
||||
a full copy of the model, and incoming requests are distributed to available workers.
|
||||
|
||||
Launch examples:
|
||||
|
||||
- single available GPU (default)
|
||||
python -m scripts.chat_web
|
||||
|
||||
- 4 GPUs
|
||||
python -m scripts.chat_web --num-gpus 4
|
||||
|
||||
To chat, open the URL printed in the console. (If on cloud box, make sure to use public IP)
|
||||
|
||||
Endpoints:
|
||||
GET / - Chat UI
|
||||
POST /chat/completions - Chat API (streaming only)
|
||||
GET /health - Health check with worker pool status
|
||||
GET /stats - Worker pool statistics and GPU utilization
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import torch
|
||||
import asyncio
|
||||
from contextlib import asynccontextmanager
|
||||
from fastapi import FastAPI
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from fastapi.responses import StreamingResponse, HTMLResponse, FileResponse
|
||||
from pydantic import BaseModel
|
||||
from typing import List, Optional, AsyncGenerator
|
||||
from dataclasses import dataclass
|
||||
|
||||
from nanochat.common import compute_init
|
||||
from nanochat.checkpoint_manager import load_model
|
||||
from nanochat.engine import Engine
|
||||
|
||||
parser = argparse.ArgumentParser(description='NanoChat Web Server')
|
||||
parser.add_argument('-n', '--num-gpus', type=int, default=1, help='Number of GPUs to use (default: 1)')
|
||||
parser.add_argument('-i', '--source', type=str, default="sft", help="Source of the model: sft|mid|rl")
|
||||
parser.add_argument('-t', '--temperature', type=float, default=0.8, help='Default temperature for generation')
|
||||
parser.add_argument('-k', '--top-k', type=int, default=50, help='Default top-k sampling parameter')
|
||||
|
|
@ -32,7 +52,55 @@ parser.add_argument('--host', type=str, default='0.0.0.0', help='Host to bind th
|
|||
args = parser.parse_args()
|
||||
|
||||
ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init()
|
||||
autocast_ctx = torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16)
|
||||
|
||||
@dataclass
|
||||
class Worker:
|
||||
"""A worker with a model loaded on a specific GPU."""
|
||||
gpu_id: int
|
||||
device: torch.device
|
||||
engine: Engine
|
||||
tokenizer: object
|
||||
autocast_ctx: torch.amp.autocast
|
||||
|
||||
class WorkerPool:
|
||||
"""Pool of workers, each with a model replica on a different GPU."""
|
||||
|
||||
def __init__(self, num_gpus: Optional[int] = None):
|
||||
self.num_gpus = num_gpus if num_gpus is not None else torch.cuda.device_count()
|
||||
self.workers: List[Worker] = []
|
||||
self.available_workers: asyncio.Queue = asyncio.Queue()
|
||||
|
||||
async def initialize(self, source: str, model_tag: Optional[str] = None, step: Optional[int] = None):
|
||||
"""Load model on each GPU."""
|
||||
print(f"Initializing worker pool with {self.num_gpus} GPUs...")
|
||||
|
||||
for gpu_id in range(self.num_gpus):
|
||||
device = torch.device(f"cuda:{gpu_id}")
|
||||
print(f"Loading model on GPU {gpu_id}...")
|
||||
|
||||
model, tokenizer, _ = load_model(source, device, phase="eval", model_tag=model_tag, step=step)
|
||||
engine = Engine(model, tokenizer)
|
||||
autocast_ctx = torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16)
|
||||
|
||||
worker = Worker(
|
||||
gpu_id=gpu_id,
|
||||
device=device,
|
||||
engine=engine,
|
||||
tokenizer=tokenizer,
|
||||
autocast_ctx=autocast_ctx
|
||||
)
|
||||
self.workers.append(worker)
|
||||
await self.available_workers.put(worker)
|
||||
|
||||
print(f"All {self.num_gpus} workers initialized!")
|
||||
|
||||
async def acquire_worker(self) -> Worker:
|
||||
"""Get an available worker from the pool."""
|
||||
return await self.available_workers.get()
|
||||
|
||||
async def release_worker(self, worker: Worker):
|
||||
"""Return a worker to the pool."""
|
||||
await self.available_workers.put(worker)
|
||||
|
||||
class ChatMessage(BaseModel):
|
||||
role: str
|
||||
|
|
@ -43,14 +111,13 @@ class ChatRequest(BaseModel):
|
|||
temperature: Optional[float] = None
|
||||
max_tokens: Optional[int] = None
|
||||
top_k: Optional[int] = None
|
||||
stream: Optional[bool] = True
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI):
|
||||
"""Load model on startup."""
|
||||
print("Loading nanochat model...")
|
||||
app.state.model, app.state.tokenizer, _ = load_model(args.source, device, phase="eval", model_tag=args.model_tag, step=args.step)
|
||||
app.state.engine = Engine(app.state.model, app.state.tokenizer)
|
||||
"""Load models on all GPUs on startup."""
|
||||
print("Loading nanochat models across GPUs...")
|
||||
app.state.worker_pool = WorkerPool(num_gpus=args.num_gpus)
|
||||
await app.state.worker_pool.initialize(args.source, model_tag=args.model_tag, step=args.step)
|
||||
print(f"Server ready at http://localhost:{args.port}")
|
||||
yield
|
||||
|
||||
|
|
@ -85,8 +152,7 @@ async def logo():
|
|||
return FileResponse(logo_path, media_type="image/svg+xml")
|
||||
|
||||
async def generate_stream(
|
||||
engine,
|
||||
tokenizer,
|
||||
worker: Worker,
|
||||
tokens,
|
||||
temperature=None,
|
||||
max_new_tokens=None,
|
||||
|
|
@ -97,11 +163,11 @@ async def generate_stream(
|
|||
max_new_tokens = max_new_tokens if max_new_tokens is not None else args.max_tokens
|
||||
top_k = top_k if top_k is not None else args.top_k
|
||||
|
||||
assistant_end = tokenizer.encode_special("<|assistant_end|>")
|
||||
bos = tokenizer.get_bos_token_id()
|
||||
assistant_end = worker.tokenizer.encode_special("<|assistant_end|>")
|
||||
bos = worker.tokenizer.get_bos_token_id()
|
||||
|
||||
with autocast_ctx:
|
||||
for token_column, token_masks in engine.generate(
|
||||
with worker.autocast_ctx:
|
||||
for token_column, token_masks in worker.engine.generate(
|
||||
tokens,
|
||||
num_samples=1,
|
||||
max_tokens=max_new_tokens,
|
||||
|
|
@ -113,82 +179,89 @@ async def generate_stream(
|
|||
if token == assistant_end or token == bos:
|
||||
break
|
||||
|
||||
token_text = tokenizer.decode([token])
|
||||
yield f"data: {json.dumps({'token': token_text})}\n\n"
|
||||
token_text = worker.tokenizer.decode([token])
|
||||
yield f"data: {json.dumps({'token': token_text, 'gpu': worker.gpu_id})}\n\n"
|
||||
|
||||
yield f"data: {json.dumps({'done': True})}\n\n"
|
||||
|
||||
@app.post("/chat/completions")
|
||||
async def chat_completions(request: ChatRequest):
|
||||
"""Chat completion endpoint with streaming."""
|
||||
engine = app.state.engine
|
||||
tokenizer = app.state.tokenizer
|
||||
"""Chat completion endpoint (streaming only) - uses worker pool for multi-GPU."""
|
||||
worker_pool = app.state.worker_pool
|
||||
|
||||
# Build conversation tokens
|
||||
bos = tokenizer.get_bos_token_id()
|
||||
user_start = tokenizer.encode_special("<|user_start|>")
|
||||
user_end = tokenizer.encode_special("<|user_end|>")
|
||||
assistant_start = tokenizer.encode_special("<|assistant_start|>")
|
||||
assistant_end = tokenizer.encode_special("<|assistant_end|>")
|
||||
# Acquire a worker from the pool (will wait if all are busy)
|
||||
worker = await worker_pool.acquire_worker()
|
||||
|
||||
conversation_tokens = [bos]
|
||||
for message in request.messages:
|
||||
if message.role == "user":
|
||||
conversation_tokens.append(user_start)
|
||||
conversation_tokens.extend(tokenizer.encode(message.content))
|
||||
conversation_tokens.append(user_end)
|
||||
elif message.role == "assistant":
|
||||
conversation_tokens.append(assistant_start)
|
||||
conversation_tokens.extend(tokenizer.encode(message.content))
|
||||
conversation_tokens.append(assistant_end)
|
||||
try:
|
||||
# Build conversation tokens
|
||||
bos = worker.tokenizer.get_bos_token_id()
|
||||
user_start = worker.tokenizer.encode_special("<|user_start|>")
|
||||
user_end = worker.tokenizer.encode_special("<|user_end|>")
|
||||
assistant_start = worker.tokenizer.encode_special("<|assistant_start|>")
|
||||
assistant_end = worker.tokenizer.encode_special("<|assistant_end|>")
|
||||
|
||||
conversation_tokens.append(assistant_start)
|
||||
conversation_tokens = [bos]
|
||||
for message in request.messages:
|
||||
if message.role == "user":
|
||||
conversation_tokens.append(user_start)
|
||||
conversation_tokens.extend(worker.tokenizer.encode(message.content))
|
||||
conversation_tokens.append(user_end)
|
||||
elif message.role == "assistant":
|
||||
conversation_tokens.append(assistant_start)
|
||||
conversation_tokens.extend(worker.tokenizer.encode(message.content))
|
||||
conversation_tokens.append(assistant_end)
|
||||
|
||||
conversation_tokens.append(assistant_start)
|
||||
|
||||
# Streaming response with worker release after completion
|
||||
async def stream_and_release():
|
||||
try:
|
||||
async for chunk in generate_stream(
|
||||
worker,
|
||||
conversation_tokens,
|
||||
temperature=request.temperature,
|
||||
max_new_tokens=request.max_tokens,
|
||||
top_k=request.top_k
|
||||
):
|
||||
yield chunk
|
||||
finally:
|
||||
# Release worker back to pool after streaming is done
|
||||
await worker_pool.release_worker(worker)
|
||||
|
||||
if request.stream:
|
||||
return StreamingResponse(
|
||||
generate_stream(
|
||||
engine,
|
||||
tokenizer,
|
||||
conversation_tokens,
|
||||
temperature=request.temperature,
|
||||
max_new_tokens=request.max_tokens,
|
||||
top_k=request.top_k
|
||||
),
|
||||
stream_and_release(),
|
||||
media_type="text/event-stream"
|
||||
)
|
||||
else:
|
||||
# Non-streaming response
|
||||
temperature = request.temperature if request.temperature is not None else args.temperature
|
||||
max_tokens = request.max_tokens if request.max_tokens is not None else args.max_tokens
|
||||
top_k = request.top_k if request.top_k is not None else args.top_k
|
||||
|
||||
with autocast_ctx:
|
||||
result_tokens, masks = engine.generate_batch(
|
||||
conversation_tokens,
|
||||
num_samples=1,
|
||||
max_tokens=max_tokens,
|
||||
temperature=temperature,
|
||||
top_k=top_k
|
||||
)[0]
|
||||
|
||||
response_tokens = result_tokens[len(conversation_tokens):]
|
||||
response_text = tokenizer.decode(response_tokens)
|
||||
return {
|
||||
"choices": [{
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": response_text
|
||||
},
|
||||
"finish_reason": "stop"
|
||||
}]
|
||||
}
|
||||
except Exception as e:
|
||||
# Make sure to release worker even on error
|
||||
await worker_pool.release_worker(worker)
|
||||
raise e
|
||||
|
||||
@app.get("/health")
|
||||
async def health():
|
||||
"""Health check endpoint."""
|
||||
worker_pool = getattr(app.state, 'worker_pool', None)
|
||||
return {
|
||||
"status": "ok",
|
||||
"ready": hasattr(app.state, 'model') and app.state.model is not None
|
||||
"ready": worker_pool is not None and len(worker_pool.workers) > 0,
|
||||
"num_gpus": worker_pool.num_gpus if worker_pool else 0,
|
||||
"available_workers": worker_pool.available_workers.qsize() if worker_pool else 0
|
||||
}
|
||||
|
||||
@app.get("/stats")
|
||||
async def stats():
|
||||
"""Get worker pool statistics."""
|
||||
worker_pool = app.state.worker_pool
|
||||
return {
|
||||
"total_workers": len(worker_pool.workers),
|
||||
"available_workers": worker_pool.available_workers.qsize(),
|
||||
"busy_workers": len(worker_pool.workers) - worker_pool.available_workers.qsize(),
|
||||
"workers": [
|
||||
{
|
||||
"gpu_id": w.gpu_id,
|
||||
"device": str(w.device)
|
||||
} for w in worker_pool.workers
|
||||
]
|
||||
}
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user