Also retire support for the MINIX versions of /etc/hosts and
/etc/resolv.conf. These files will be brought back with NetBSD
imports, although like NetBSD, MINIX 3 will be using external
resolvers directly from then on. Since resolv.conf is hand-created
rather than installed, we do not mark it as obsolete.
Change-Id: Ie6154d5a4d8d977c19b9754bf920ae868680e9d1
This commit (temporarily) leaves MINIX 3 without a TCP/IP service.
Thanks go out to Philip Homburg for providing this TCP/IP stack in the
first place. It has served MINIX well for a long time.
Change-Id: I0e3eb6fe64204081e4e3c2b9d6e6bd642f121973
This needs to be done before retiring inet itself, since these
utilities include headers from inet directly.
Also retire the now-obsolete paramvalue(3).
Change-Id: I9b27771190a6a32ee533b0c0d9d37f61a16ee36c
This new implementation of the UDS service is built on top of the
libsockevent library. It thereby inherits all the advantages that
libsockevent brings. However, the fundamental restructuring
required for that change also paved the way for resolution of a
number of other important open issues with the old UDS code. Most
importantly, the rewrite brings the behavior of the service much
closer to POSIX compliance and NetBSD compatibility. These are the
most important changes:
- due to the use of libsockevent, UDS now supports multiple suspending
calls per socket and a large number of standard socket flags and
options;
- socket address matching is now based on <device,inode> lookups
instead of canonized path names, and socket addresses are no longer
altered either due to canonization or at connect time;
- the socket state machine is now well defined, most importantly
resolving the erroneous reset-on-EOF semantics of the old UDS, but
also allowing socket reuse;
- sockets are now connected before being accepted instead of being
held in connecting state, unless the LOCAL_CONNWAIT option is set
on either the connecting or the listening socket;
- connect(2) on datagram sockets is now supported (needed by syslog),
and proper datagram socket disconnect notification is provided;
- the receive queue now supports segmentation, associating ancillary
data (in-flight file descriptors and credentials) with each segment
instead of being kept fully separately; this is a POSIX requirement
(and needed by tmux);
- as part of the segmentation support, the receive queue can now hold
as many packets as can fit, instead of one;
- in addition to the flags supported by libsockevent, the MSG_PEEK,
MSG_WAITALL, MSG_CMSG_CLOEXEC, MSG_TRUNC, and MSG_CTRUNC send and
receive flags are now supported;
- the SO_PASSCRED and SO_PEERCRED socket options are replaced by
LOCAL_CREDS and LOCAL_PEEREID respectively, now following NetBSD
semantics and allowing use of NetBSD libc's getpeereid(3);
- memory usage is reduced by about 250 KB due to centralized in-flight
file descriptor tracking, with a limit of OPEN_MAX total rather than
of OPEN_MAX per socket;
- memory usage is reduced by another ~50 KB due to removal of state
redundancy, despite the fact that socket path names may now be up to
253 bytes rather than the previous 104 bytes;
- compared to the old UDS, there is now very little direct indexing on
the static array of sockets, thus allowing dynamic allocation of
sockets more easily in the future;
- the UDS service now has RMIB support for the net.local sysctl tree,
implementing preliminary support for NetBSD netstat(1).
Change-Id: I4a9b6fe4aaeef0edf2547eee894e6c14403fcb32
The getnucred() function was used by UDS to obtain credentials of user
processes in a form used in the UDS API, namely the ucred structure.
Since the NetBSD merge, this structure has changed drastically (aside
from being renamed to "uucred"), and it is no longer in UDS's best
interest to use this structure internally. Therefore, getnucred() is
no longer a useful API either, and instead we directly use the
previously private getepinfo() function to obtain credentials.
Change-Id: I80bc809de716ec0a9b7497cb109d2f2708a629d5
This library provides an event-based abstraction model and dispatching
facility for socket drivers. Its main goal is to eliminate any and
all need for socket drivers to keep track of pending socket calls.
Additionally, this library takes over responsibility of a number of
other tasks that would otherwise be duplicated between socket drivers,
but in such a way that individual socket drivers retain a large degree
of freedom in terms of API behavior. The library's main features are:
- suspension, resumption, and cancellation of socket calls;
- an abstraction layer for select(2);
- state tracking of shutdown(2);
- pending (asynchronous) errors and the SO_ERROR socket option;
- listening-socket tracking and the SO_ACCEPTCONN socket option;
- generation of SIGPIPE signals; SO_NOSIGPIPE, MSG_NOSIGNAL;
- send and receive low-watermark tracking, SO_SNDLOWAT, SO_RCVLOWAT;
- send and receive timeout support and SO_SNDTIMEO, SO_RCVTIMEO;
- an abstraction layer for the SO_LINGER socket option;
- tracking of various on/off socket options as well as SO_TYPE;
- a range of pre-checks on socket calls that are required POSIX.
In order to track per-socket state, the library manages an opaque
"sock" object for each socket. The allocation of such objects is left
entirely to the socket driver. Each sock object has an associated
callback table for calls from libsockevent to the socket driver. The
socket driver can raise events on the sock object in order to flag
that any previously suspended operations of a particular type should
be resumed. The library may defer processing such raised events if
immediate processing could interfere with internal consistency.
The sockevent library is layered on top of libsockdriver, and should
be used by all socket driver implementations if at all possible.
Change-Id: I3eb2c80602a63ef13035f646473360293607ab76
This library provides abstractions for socket drivers, and should be
used as the basis for all socket driver implementations. It provides
the following functionality:
- a function call table abstraction, hiding the details of the
socket driver protocol with simple parameters and presenting the
socket driver with callback functions very similar to the BSD
socket API calls made from userland;
- abstracting data structures and helper functions for suspending
and resuming blocking calls;
- abstracting data structures and helper functions for copying data
from and to the caller.
Overall, the library is similar to lib{block,char,fs,input,net}driver
in concept. Some of the abstractions provided here should in fact be
applied to libchardriver as well. As always, for the case that the
provided message loop is too restrictive, a set of more low-level
message processing functions is provided.
Change-Id: I79ec215f5e195c3b0197e223636f987d3755fb13
A pair of manual pages were already present in /usr/share/man, but
not yet installed. Install them as well. Lots and lots more from
NetBSD's set of manual pages should be imported, though.
Change-Id: Ie2e8946967afcb2e71de563f06fa331586dcb31d
IMPORTANT: this change has a docs/UPDATING entry!
This patch performs an initial import of the infrastructure and a
subset of the NetBSD set of rc startup and shutdown scripts. The
"initial" refers to the fact that this is not yet a full switch to the
NetBSD rc system: the MINIX ramdisk rc script, which (typically) runs
as the first thing, is kept as is. After mounting the root file
system, the ramdisk rc script will start the NetBSD rc infrastructure
by invoking /etc/rc, however. The regular MINIX startup-and-shutdown
script has been moved from /etc/rc to /etc/rc.minix, and is now
invoked as part of the NetBSD rc infrastructure through a bridge rc
script /etc/rc.d/minixrc. /etc/rc.minix invokes /usr/etc/rc as before.
Switching over the ramdisk to the NetBSD system and decomposing the
MINIX rc.minix script into smaller components are left to future work.
Also, the current pkgsrc etc/rc.d auto-start functionality is left as
is, even though it should be removed (see the etc/usr/rc comment).
Change-Id: Ia96cae7c426e94b85c67978dc1307dacc4b09fc5
This requires importing a few files from mail(1) already. Importing
the rest of mail(1) is left to future work.
Change-Id: If96513a306245cd7fb64660758d0dbd29a36e87c
IMPORTANT: this change has a docs/UPDATING entry!
This rename is unfortunately necessary because NetBSD has decided to
create its own service(8) utility, and we will want to import theirs
as well. The two can obviously not coexist.
Also move ours from /bin to /sbin, as it is a superuser-only utility.
Change-Id: Ic6e46ffb3a84b4747d2fdcb0d74e62dbea065039
IMPORTANT: this change has a docs/UPDATING entry!
This change is a long overdue switch-over from the old MINIX set of
user and group accounts to the NetBSD set. This switch-over is
increasingly important now that we are importing more and more
utilities from NetBSD, several of which expect various user accounts
to exist. By switching over in one go, we save ourselves various
headaches in the long run, even if the switch-over itself is a bit
painful for existing MINIX users.
The newly imported master.passwd and group files have three exceptions
compared to their NetBSD originals:
1. There is a custom "service" account for MINIX 3 services. This
account is used to limit run-time privileges of various system
services, and is not used for any files on disk. Its user ID may
be changed later, but should always correspond to whatever the
SERVICE_UID definition is set to.
2. The user "bin" has its shell set to /bin/sh, instead of NetBSD's
/sbin/nologin. The reason for this is that the test set in
/usr/tests/minix-posix will not be able to run otherwise.
3. The group "operator" has been set to group ID 0, to match its old
value. This tweak is purely for transitioning purposes: as of
writing, pkgsrc packages are still using root:operator as owner and
group for most installed files. Sometime later, we can change back
"operator" to group ID 5 without breaking anything, because it does
not appear that this group name is used for anything important.
Change-Id: I689bcfff4cf7ba85c27d1ae579057fa3f8019c68
This small change makes it easier to do sorts without having to deal
with these entries over and over again.
Change-Id: Id5077a17733fa4b535cdc9881109286335d3cb17
This was a MINIX3-specific header file placed outside of the minix/
header subdirectory, with its definitions duplicated in the more
standard minix/sysutil.h header.
Also make env_prefix(3) take constant pointers.
Change-Id: I243c38eb38e24eb98f0c0dddf7f340e7fec255f4
Without this file, the NetBSD userland will fall back by default to the
old, insecure classic UNIX password hashing algorithm.
This is a big security issue. Please check docs/UPDATING for details.
Change-Id: Ib85646ee4678f91384bab238426ee55ff26da011
The way these options work is by creating files that contain debugging
symbols and stashing them in a dedicated set. The minix-debug set has
been created for this purpose, but it will probably have to be refined
since it has been tested only with the default options with an i386
cross-build.
LSC: Amended to support many combination of MKDEBUG, MKDEBUGLIB, with
and without X11, for both intel and arm.
Change-Id: I2901952e8229938f9ac79c8656484acf704ccd9b
Most of the nodes in the general sysctl tree will be managed directly
by the MIB service, which obtains the necessary information as needed.
However, in certain cases, it makes more sense to let another service
manage a part of the sysctl tree itself, in order to avoid replicating
part of that other service in the MIB service. This patch adds the
basic support for such delegation: remote services may now register
their own subtrees within the full sysctl tree with the MIB service,
which will then forward any sysctl(2) requests on such subtrees to the
remote services.
The system works much like mounting a file system, but in addition to
support for shadowing an existing node, the MIB service also supports
creating temporary mount point nodes. Each have their own use cases.
A remote "kern.ipc" would use the former, because even when such a
subtree were not mounted, userland would still expect some of its
children to exist and return default values. A remote "net.inet"
would use the latter, as there is no reason to precreate nodes for all
possible supported networking protocols in the MIB "net" subtree.
A standard remote MIB (RMIB) implementation is provided for services
that wish to make use of this functionality. It is essentially a
simplified and somewhat more lightweight version of the MIB service's
internals, and works more or less the same from a programmer's point
of view. The most important difference is the "rmib" prefix instead
of the "mib" prefix. Documentation will hopefully follow later.
Overall, the RMIB functionality should not be used lightly, for
several reasons. First, despite being more lightweight than the MIB
service, the RMIB module still adds substantially to the code
footprint of the containing service. Second, the RMIB protocol not
only adds extra IPC for sysctl(2), but has also not been optimized for
performance in other ways. Third, and most importantly, the RMIB
implementation also several limitations. The main limitation is that
remote MIB subtrees must be fully static. Not only may the user not
create or destroy nodes, the service itself may not either, as this
would clash with the simplified remote node versioning system and
the cached subtree root node child counts. Other limitations exist,
such as the fact that the root of a remote subtree may only be a
node-type node, and a stricter limit on the highest node identifier
of any child in this subtree root (currently 4095).
The current implementation was born out of necessity, and therefore
it leaves several improvements to future work. Most importantly,
support for exit and crash notification is missing, primarily in the
MIB service. This means that remote subtrees may not be cleaned up
immediately, but instead only when the MIB service attempts to talk
to the dead remote service. In addition, if the MIB service itself
crashes, re-registration of remote subtrees is currently left up to
the individual RMIB users. Finally, the MIB service uses synchronous
(sendrec-based) calls to the remote services, which while convenient
may cause cascading service hangs. The underlying protocol is ready
for conversion to an asynchronous implementation already, though.
A new test set, testrmib.sh, tests the basic RMIB functionality. To
this end it uses a test service, rmibtest, and also reuses part of
the existing test87 MIB service test.
Change-Id: I3378fe04f2e090ab231705bde7e13d6289a9183e