A few MINIX3-specific changes are necessary due to the fact that we
are missing the System V IPC message queue system calls.
Change-Id: Idd252984be9df69618cef79bcf6c676cbf915d85
- rewrite the semop(2) implementation so that it now conforms to the
specification, including atomicity, support for blocking more than
once, range checks, but also basic fairness support;
- fix permissions checking;
- fix missing time adjustments;
- fix off-by-one errors and other bugs;
- do not allocate dynamic memory for GETALL/SETALL;
- add test88, which properly tests the semaphore functionality.
Change-Id: I85f0d3408c0d6bba41cfb4c91a34c8b46b2a5959
Due to differences in (mainly) measuring and accumulating CPU times,
the two top programs end up serving different purposes: the NetBSD
top is a system administration tool, while the MINIX3 top (now mtop)
is a performance debugging tool. Therefore, we keep both.
The newly imported BSD top has a few MINIX3-specific changes. CPU
statistics separate system time from kernel time, rather than kernel
time from time spent on handling interrupts. Memory statistics show
numbers that are currently relevant for MINIX3. Swap statistics are
disabled entirely. All of these changes effectively bring it closer
to how mtop already worked as well.
Change-Id: I9611917cb03e164ddf012c5def6da0e7fede826d
No changes except for one cosmetic adjustment: NetBSD has chosen to
rename the standard TT column to TTY and not shorten tty names; we
undo those changes, making ps(1) behave more in accordance with the
specification and its manual page, and, most importantly for us, not
use an incredibly wide TTY column to print "console".
Change-Id: I3b3c198762f3eacf1b8e500557a803c1fedf2a61
Adapt libc devname(3) to make use of it, so that such device name
queries are now several orders of magnitude faster. The database
is created and updated at system bootup time.
Change-Id: I0cbcb24c7d47577d4d6af9c8290c21ee4df9a0ff
Imported with no changes, but not all parts are expected to be
functional. The libc nlist functionality is enabled for the
purpose of successful linking, although the nlist functionaly has
not been tested on MINIX3 nor is it needed for how we use libkvm.
In terms of function calls: kvm_getproc2, kvm_getargv2,
kvm_getenvv2, and kvm_getlwps are expected to work, whereas
kvm_getproc, kvm_getargv, kvm_getenvv, and kvm_getfiles are not.
Change-Id: I7539209736f1771fc0b7db5e839d2df72f5ac615
The new MIB service implements the sysctl(2) system call which, as
we adopt more NetBSD code, is an increasingly important part of the
operating system API. The system call is implemented in the new
service rather than as part of an existing service, because it will
eventually call into many other services in order to gather data,
similar to ProcFS. Since the sysctl(2) functionality is used even
by init(8), the MIB service is added to the boot image.
MIB stands for Management Information Base, and the MIB service
should be seen as a knowledge base of management information.
The MIB service implementation of the sysctl(2) interface is fairly
complete; it incorporates support for both static and dynamic nodes
and imitates many NetBSD-specific quirks expected by userland. The
patch also adds trace(1) support for the new system call, and adds
a new test, test87, which tests the fundamental operation of the
MIB service rather thoroughly.
Change-Id: I4766b410b25e94e9cd4affb72244112c2910ff67
The magic runtime library is now built as part of the regular build, if
the MKMAGIC=yes flag is passed to the build system. The library has
been renamed from "magic" to "magicrt" to resolve a name clash with BSD
file(1)'s libmagic. All its level-5 LLVM warnings have been resolved.
The final library, "libmagicrt.bcc", is now stored in the destination
library directory rather than in the source tree.
Change-Id: Iebd4b93a2cafbb59f95d938ad1edb8b4f6e729f6
It was not used or tested on x86 in practice, and the automated arm
tests should obviate the need for a dummy-only x86 implementation.
It should be noted that this change is merely the simplest way to
deal with conflicts with live update (for the second time now).
Change-Id: I6e066c4659c6213cd556144271784588356b140f
This brings our tree to NetBSD 7.0, as found on -current on the
10-10-2015.
This updates:
- LLVM to 3.6.1
- GCC to GCC 5.1
- Replace minix/commands/zdump with usr.bin/zdump
- external/bsd/libelf has moved to /external/bsd/elftoolchain/
- Import ctwm
- Drop sprintf from libminc
Change-Id: I149836ac18e9326be9353958bab9b266efb056f0
The minix set is now divided into minix-base, minix-comp, minix-games,
minix-kernel, minix-man and minix-tests.
This allows massive space savings on the installlation CD because only
the base system used for installation is stored uncompressed. Also, it
makes the system more modular.
Change-Id: Ic8d168b4c3112204013170f07245aef98aaa51e7
- move from minix/commands to minix/usr.sbin;
- install into /usr/sbin instead of /usr/bin;
- move manual page into source directory;
- resolve compilation warning;
- convert to KNF.
Change-Id: I1206b52e8804a68a3a80f6d7f63916e7fcdc9e3f
- move from minix/commands to minix/usr.sbin;
- install into /usr/sbin instead of /usr/bin;
- move manual page into source directory;
- resolve compilation warning;
- convert to KNF.
Change-Id: Iccb4a8b27ae220254bae19e9198478b40706f542
- move from minix/commands to minix/usr.sbin;
- install into /usr/sbin instead of /usr/bin;
- move manual page into source directory;
- resolve compilation warning;
- convert to KNF.
Change-Id: I08c16998bd499a468799a6587f6fe45f42590461
This commits adds a basic infrastructure to support Address Space
Randomization (ASR). In a nutshell, using the already imported ASR
LLVM pass, multiple versions can be generated for the same system
service, each with a randomized, different address space layout.
Combined with the magic instrumentation for state transfer, a system
service can be live updated into another ASR-randomized version at
runtime, thus providing live rerandomization.
Since MINIX3 is not yet capable of running LLVM linker passes, the
ASR-randomized service binaries have to be pregenerated during
crosscompilation. These pregenerated binaries can then be cycled
through at runtime. This patch provides the basic proof-of-concept
infrastructure for both these parts.
In order to support pregeneration, the clientctl host script has
been extended with a "buildasr" command. It is to be used after
building the entire system with bitcode and magic support, and will
produce a given number of ASR-randomized versions of all system
services. These services are placed in /usr/service/asr in the
image that is generated as final step by the "buildasr" command.
In order to support runtime updating, a new update_asr(8) command
has been added to MINIX3. This command attempts to live-update the
running system services into their next ASR-randomized versions.
For now, this command is not run automatically, and thus must be
invoked manually.
Technical notes:
- For various reasons, magic instrumentation is x86-only for now,
and ASR functionality is therefore to be used on x86 only as well.
- The ASR-randomized binaries are placed in numbered subdirectories
so as not to have to change their actual program names, which are
assumed to be static in various places (system.conf, procfs).
- The root partition is typically too small to contain all the
produced binaries, which is why we introduce /usr/service. There
is a symlink from /service/asr to /usr/service/asr for no other
reason than to let userland continue to assume that all services
are reachable through /service.
- The ASR count field (r_asr_count/ASRcount) maintained by RS is not
used within RS in any way; it is only passed through procfs to
userland in order to allow update_asr(8) to keep track of which
version is currently loaded without having to maintain own state.
- Ideally, pre-instrumentation linking of a service would remove all
its randomized versions. Currently, the user is assumed not to
perform ASR instrumentation and then recompile system services
without performing ASR instrumentation again, as the randomized
binaries included in the image would then be stale. This aspect
has to be improved later.
- Various other issues are flagged in the comments of the various
parts of this patch.
Change-Id: I093ad57f31c18305591f64b2d491272288aa0937
For dynamically linked executables, the interpreter is passed a
file descriptor of the binary being executed. To this end, VFS
opens the target executable, but opening the file fails if it is
not readable, even when it is executable. With this patch, when
opening the executable, it verifies the X bit rather than the R
bit on the file, thus allowing the execution of dynamically
linked binaries that are executable but not readable.
Add test86 to verify correctness.
Change-Id: If3514add6a33b33d52c05a0a627d757bff118d77
- The lmfs_get_block*(3) API calls may now return an error. The idea
is to encourage a next generation of file system services to do a
better job at dealing with block read errors than the MFS-derived
implementations do. These existing file systems have been changed
to panic immediately upon getting a block read error, in order to
let unchecked errors cause corruption. Note that libbdev already
retries failing I/O operations a few times first.
- The libminixfs block device I/O module (bio.c) now deals properly
with end-of-file conditions on block devices. Since a device or
partition size may not be a multiple of the root file system's block
size, support for partial block retrival has been added, with a new
internal lmfs_get_partial_block(3) call. A new test program,
test85, tests the new handling of EOF conditions when reading,
writing, and memory-mapping a block device.
Change-Id: I05e35b6b8851488328a2679da635ebba0c6d08ce
The new syslogd(8) does not create log files that do not already
exist, and thus, we adopt the NetBSD way of creating them.
Change-Id: Icd7fdba362726696df6a52dd55c049fd2bfcc2d3
The primary reason for the import is a likely GPL taint of the
original MINIX3 syslogd. As a result, this import may still
have some rough edges.
Change-Id: I5c8d26eca10fc2dd50ecc9eab44a1d483cf068a9
This test connects to a remote HTTP server to retrieve files, using various
chunk sizes and concurrency settings to exercise the network stack. The test
is only performed is USENETWORK=yes. This test requires the following URLs to
remain available: http://test82.minix3.org/test1.txt and
http://test82.minix3.org/test2.bin. The former contains a 'Hello world'
message followed by a newline, the latter all 16-bit values in increasing
order, using big-endian notation.
Change-Id: I696106482fb1658f9657be2b6845a1b37a3d6172
These new tests are largely based on the code from test 56 (UDS). Common code
is moved into a separate file common-socket.c. In some instances the tests
are too strict for TCP/UDP sockets, which may not always react instantly to
whatever happens on the other side (even locally). For these cases, the
ignore_* fields in struct socket_test_info indicate that there needs to be
an exception. There are also tests where it seems the functionality of inet
is either incorrect or incomplete with regard to the POSIX standard. In these
cases, the bug_* fields are used to document the issues while avoiding
failure of the test.
Change-Id: Ia860deb4559d42608790451936b1aade866faebc
This patch adds support for Unix98 pseudo terminals, that is,
posix_openpt(3), grantpt(3), unlockpt(3), /dev/ptmx, and /dev/pts/.
The latter is implemented with a new pseudo file system, PTYFS.
In effect, this patch adds secure support for unprivileged pseudo
terminal allocation, allowing programs such as tmux(1) to be used by
non-root users as well. Test77 has been extended with new tests, and
no longer needs to run as root.
The new functionality is optional. To revert to the old behavior,
remove the "ptyfs" entry from /etc/fstab.
Technical nodes:
o The reason for not implementing the NetBSD /dev/ptm approach is that
implementing the corresponding ioctl (TIOCPTMGET) would require
adding a number of extremely hairy exceptions to VFS, including the
PTY driver having to create new file descriptors for its own device
nodes.
o PTYFS is required for Unix98 PTYs in order to avoid that the PTY
driver has to be aware of old-style PTY naming schemes and even has
to call chmod(2) on a disk-backed file system. PTY cannot be its
own PTYFS since a character driver may currently not also be a file
system. However, PTYFS may be subsumed into a DEVFS in the future.
o The Unix98 PTY behavior differs somewhat from NetBSD's, in that
slave nodes are created on ptyfs only upon the first call to
grantpt(3). This approach obviates the need to revoke access as
part of the grantpt(3) call.
o Shutting down PTY may leave slave nodes on PTYFS, but once PTY is
restarted, these leftover slave nodes will be removed before they
create a security risk. Unmounting PTYFS will make existing PTY
slaves permanently unavailable, and absence of PTYFS will block
allocation of new Unix98 PTYs until PTYFS is (re)mounted.
Change-Id: I822b43ba32707c8815fd0f7d5bb7a438f51421c1